Adding and Subtracting Rational Functions

RaiseMyMarks.com July 4, 2024

Adding and Subtracting Rational Functions

Let's start by reviewing the addition and subtraction of rational numbers. We'll start with an example.

Example

$$\frac{4}{2} + \frac{3}{7}$$

We need to start by finding a common denominator for the two fractions $\frac{4}{2}$ and $\frac{3}{7}$.

$$= \frac{\frac{4}{2} + \frac{3}{7}}{2(7)} + \frac{3(2)}{7(2)}$$
$$= \frac{28}{14} + \frac{6}{14}$$

Once we have a common denominator which in this case is $2 \times 7 = 14$, we can add the numerators.

$$= \frac{28+6}{14} \\
= \frac{34}{14} \\
= \frac{17}{7}$$

After simplifying, factoring out common factors from the numerator and denominator, we have our final answer, $\frac{17}{7}$.

Example

Let's consider another example. This time subtraction of two fractions.

$$\frac{3}{8} - \frac{2}{3}$$

$$= \frac{3(3)}{8(3)} - \frac{2(8)}{3(8)}$$

$$= \frac{9}{24} - \frac{16}{24}$$

$$= \frac{9 - 16}{24}$$

$$= \frac{-7}{24}$$

Now let's look at the addition and subtraction of rational functions.

Example

Add the following rational expressions.

(a) $\frac{x^2}{x-2} + \frac{3x}{x-2} - \frac{10}{x-2}$ (b) $\frac{2x}{xy} + \frac{4}{x^2}$

Solution

(a) The denominators are all the same in this example so all well have to do is add and simplify the numertors.

$$\frac{x^2}{x-2} + \frac{3x}{x-2} - \frac{10}{x-2}$$

$$= \frac{x^2 + 3x - 10}{x-2}$$

$$= \frac{(x+5)(x-2)}{x-2}$$

$$= x+5,$$

with restrictions $x \neq 2$.

(b) In this second example, the denominators are different so we need to find a common denominator first.

$$\frac{2x}{xy} + \frac{4}{x^2}$$

$$= \frac{2x(x)}{(xy)(x)} + \frac{4(y^2)}{x^2y}$$

$$= \frac{2x^2}{x^2y} + \frac{4y^2}{x^2y}$$

$$= \frac{2x^2 + 4y^2}{x^2y},$$

with restrictions $x \neq 0, y \neq 0$.

Exercises

- 1. Add or subtract the following. Simplify and identify all restrictions.
 - (a) $\frac{7}{x} + \frac{3}{x}$
 - (b) $\frac{a^2}{a-4} \frac{16}{a-4}$
 - (c) $\frac{x-5}{x^2+8x-20} \frac{2x+1}{x^2-4}$
 - (d) $\frac{4}{9-x^2} \frac{7}{3+x}$
 - (e) $\frac{6xy}{a^2b} \frac{2x}{ab^2y} + 1$
 - (f) $\frac{2h}{h^2-a} + \frac{h}{h^2+6h+9} \frac{3}{h-3}$
 - (g) $\frac{1}{x^2-x-12} + \frac{3}{x+3}$
 - (h) $\frac{ex+15}{x^2-25} + \frac{4x^2-1}{2x^2+9x-5}$
- 2. Simplify and state restrictions.
 - (a)

$$\frac{2x^2 - x}{x^2 - 3x} \times \frac{x^2 - x - 12}{2x^2 - 3x + 1} - \frac{x - 1}{x + 2}$$

(b)

$$\frac{\frac{3}{2} + \frac{3}{t}}{\frac{t}{t+6} - \frac{1}{t}}$$

(c)

$$\frac{\frac{1}{x+4} + \frac{1}{x-4}}{\frac{x}{x^2 - 16} + \frac{1}{x+4}}$$