Equation of a Line (Part 2)

RaiseMyMarks.com 2021

Equation of a Line

A line can be thought of as the extension of a set of points that when joined create a straight line segment.

We have two lines l_1 and l_2 . What are the slopes of l_1 and l_2 , respectively? We need to find two points on l_1 and then calculate the *rise* and *run*. Two points on l_1 : $(x_0, y_0) = (1, -1)$ and $(x_1, y_1) = (4, 2)$.

slope =
$$\frac{rise}{run} = \frac{y_1 - y_0}{x_1 - x_0} = \frac{2 - (-1)}{4 - 1} = \frac{3}{3} = 1$$

Therefore, the slope of line l_1 is 1. We usually represent the slope by m. So let's let the slope of l_1 be $m_1 = 1$.

Calculate slope of l_2 . Two points on l_2 : $(x_0, y_0) = (-1, 2)$ and $(x_1, y_1) = (2, -4)$.

slope of
$$l_2 = m_2 = \frac{y_1 - y_0}{x_1 - x_0} = \frac{-4 - 2}{2 - (-1)} = \frac{-6}{3} = -2$$

Therefore, the slope of line l_2 is $m_2 = -2$.

The equation of a line in general is given by,

$$y = mx + b$$

©Raise My Marks 2021

2 / 5

20.9.4.2.0

where m is the slope of the line and b is the y-interceiptof the line.

What is the y-interceipt?

The y-intercept is the point where the line crosses the y-axis. It cash also be calculated by sustituting x = 0 into the equation of a line. We can also find the y-interceipt by plugging the coordinates of a point on the line into the equation for the line.

Let's try and find the y-interceipt of l_1 . We have the slope for l_1 as $m_1 = 1$. The equation of line l_1 so far is,

$$y = m_1 x + b_1 = x + b_1$$

where b_1 s the y-interceipt of l_1 . Let's take a point on l_1 (1, -1) and plug it into l_1 .

$$y = x + b_1$$

-1 = 1 + b_1
-2 = b_1

Now we have the y-intercept and the equation of the line l_1 is

$$l_1: y = m_1 x + b_1$$
$$y = x - 2$$

Let's find the complete equation for the line l_2 . We already have that the slope is $m_2 = -2$. One point on line l_2 is $(x_0, y_0) = (-1, 2)$. Let's use this point to find the y-intercept.

$$y = -2x + b_2$$

 $2 = -2(-1) + b_2$
 $\therefore 0 = b_2$

©Raise My Marks 2021

3 / 5

20.9.4.2.0

Worksheet #1	Equation of a Line	Linear Relations
Now we have the e	puttion for line l_2 as.	
	$l_2: y = m_2 x + b_2$	
	y = -2x + 0	
	y = -2x	

©Raise My Marks 2021

Exercises

- 1. What is the slope of each line?
 - a) y = -2x
 - b) y = x + 6
 - c) $y = -\frac{1}{2}x + 4$
 - d) $y = \frac{5}{3}x 5$
 - e) y = -7x + 10
- 2. What is the y-interceipt for each line above?
- 3. Write the equation of the line with the following slope m and y-interceipt b.

a)
$$m = -2, b = 0$$

- b) $m = -\frac{1}{2}, b = 1$
- c) m = 3, b = -5
- d) $m = \frac{1}{4}, b = \frac{7}{2}$

©Raise My Marks 2021