Scalar Equation of a Line

Raise My
 MA Aks

RaiseMyMarks.com 2021

Scalar or Cartesian equation of a line in \mathbb{R}^{2}

If we are given a vector $\underline{n}=(A, B)$ perpendicular to the line l then the scalar or Cartesian equation of the line is given by

$$
A x+B y+C=0
$$

We can take a point $P(x, y)$ on the line and plug it into the line to find the value for C.

Examples

Find the scalar equation of the line through P and in the direction of QR where $\mathrm{P}=(2,1), \mathrm{Q}=(-3,2), \mathrm{R}=(1,1)$.

Solution:

Let's find the slope of the line.

$$
\begin{equation*}
m=\frac{\text { rise }}{\text { run }}=\frac{2-1}{-3-1}=\frac{1}{-4} \tag{1}
\end{equation*}
$$

So far the equation of our line is,

$$
y=m x+b=-\frac{1}{4} x+b
$$

We need to find the y -intercept b. We know the point $\mathrm{P}=(2,1)$ lies on the on the line. So we can plug the point P into the equation (1) and then solve for b.

$$
\begin{aligned}
1 & =-\frac{1}{4}(2)+b \\
1+\frac{1}{2} & =b \\
\frac{3}{2} & =b \\
\therefore y & =-\frac{1}{4} x+\frac{3}{2} .
\end{aligned}
$$

The scalar equation of the line is,

$$
\begin{aligned}
y= & -\frac{1}{4} x+\frac{3}{2} \\
4 y= & 4\left(-\frac{1}{4}\right) x+4\left(\frac{3}{2}\right) \\
4 y= & -x+6 \\
\therefore & x+4 y-6=0
\end{aligned}
$$

is the scalar equation of the line.

Exercises

Given the points P, Q and R below, find the scalar equation of the line through the point P and perpendicular to the direction $Q R$.
a) $P(3,2), Q(0,2), R(-3,1)$
i) $P(-3,-4), Q(2,0), R(5,4)$
b) $P(4,1), Q(-1,0), R(0,4)$
j) $P(0,-4), Q(3,0), R(-2,3)$
e) $P(-5,3), Q(0,1), R(5,4)$
k) $P(-2,5), Q(2,2), R(1,3)$
f) $P(-2,0), Q(1,3), R(4,-1)$

