First Differences

Raise My
 MA Fks

RaiseMyMarks.com
2021

First differences

This is an interesting way of determing whether a relationship is linear. The first differences are the differences between the y-values in a table of values. For example,

x	y	$1^{\text {st }}$ difference
0	0	
1	3	$3=3-0$
2	6	$3=6-3$
3	9	$3=9-6$
4	12	$3=12-9$
5	15	$3=15-12$
6	18	$3=18-15$

We have the table of values for the x and y values. The $1^{\text {st }}$ differences are equal. If we graph the points in the table of values, what do we get? Graphing the points we get a line. What is the slope and y-intercept of this line?

Slope: Let's us the points, $\left(x_{0}, y_{0}\right)=(0,0),\left(x_{1}, y_{1}\right)=(1,3)$,

$$
\begin{aligned}
m & =\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=\frac{3-0}{1-0}=3 \\
l: y & =3 x+b
\end{aligned}
$$

Insert $(0,0)$ in to the equation for l to give the y-intercept,

$$
\begin{aligned}
& 0=0+b \\
& 0=b
\end{aligned}
$$

Exercises

1. Using first differences, which tables of values represent a linear relation?

a) | x | -1 | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 6 | 4 | 2 | 0 | -2 | -4 |

d) | x | -2 | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 2 | 1 | 0 | -1 | -2 | -3 |

b) | x | -2 | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 4 | 1 | 0 | 1 | 4 | 9 |

e) | x | -2 | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | -8 | -1 | 0 | 1 | 8 | 27 |

c)

x	-2	-1	0	1	2	3
y	1	1	1	1	1	1

2. For those relations in \#1 that are linear what is the slope of the linear relation?
3. For those relations in \#1 that are linear, find the y-intercept.
4. For those relations in $\# 1$ that are linear, graph the line and write the equation of the line.
