Properties of Vectors

RaiseMyMarks.com

2021

1

Properties of Vectors

For non-zero vectors \overrightarrow{w} , \overrightarrow{v} and \overrightarrow{u} and scalrs $k, m, n \in \mathbb{R}$ we have the following properties:

1.
$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$$
 (Commutative Property)
2. $(\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w})$ (Associative Property)
3. $k(\overrightarrow{u} + \overrightarrow{v}) = k\overrightarrow{u} + k\overrightarrow{v}$ (Distributive Property)
4. $\overrightarrow{0} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{0} = \overrightarrow{v}$
5. $m(n\overrightarrow{v}) = (mn)\overrightarrow{v} = mn\overrightarrow{v}$

6. $(m+n)\overrightarrow{v} = m\overrightarrow{v} + n\overrightarrow{v}$

Exercises

31.12.3.1.0

- 1. Write the following vector in simplified form: $3(\overrightarrow{a} 2\overrightarrow{b} 5\overrightarrow{c}) 3(2\overrightarrow{a} 4\overrightarrow{b} + 2\overrightarrow{c}) (\overrightarrow{a} 3\overrightarrow{b} + 3\overrightarrow{c})$
- 2. If $\overrightarrow{a} = 3\overrightarrow{i} 4\overrightarrow{j} + \overrightarrow{k}$ and $\overrightarrow{b} = -2\overrightarrow{i} + 3\overrightarrow{j} \overrightarrow{k}$, express each of the following in terms of \overrightarrow{i} , \overrightarrow{j} and \overrightarrow{k} .
- 3. If $2\overrightarrow{x} + 3\overrightarrow{y} = \overrightarrow{a}$ and $-\overrightarrow{x} + 5\overrightarrow{y} = 6\overrightarrow{b}$, express \overrightarrow{x} and \overrightarrow{y} in terms of \overrightarrow{a} and \overrightarrow{b} .
- 4. If $\overrightarrow{x} = \frac{2}{3}\overrightarrow{y} + \frac{1}{3}\overrightarrow{z}$, $\overrightarrow{x} \overrightarrow{y} = \overrightarrow{a}$ and $\overrightarrow{y} \overrightarrow{z} = \overrightarrow{b}$, show that $\overrightarrow{a} = -\frac{1}{3}\overrightarrow{b}$.
- 5. Two vectors \overrightarrow{a} and \overrightarrow{b} have a common starting point with an angle of 12-° between them. The vectors are such that $|\overrightarrow{a}| = 3$ and $|\overrightarrow{b}| = 4$.
 - (a) Calculate $|\vec{a} + \vec{b}|$.
 - (b) Calculate the angle between \overrightarrow{a} and $\overrightarrow{a} + \overrightarrow{b}$.
- 6. Determine all possible values for t if the length of the vector $\vec{x} = t \vec{y}$ is $4|\vec{y}|$.
- 7. PQRS is a quadrilateral with $\overrightarrow{PQ} = 2\overrightarrow{a}$, $\overrightarrow{QR} = 3\overrightarrow{b}$ and $\overrightarrow{QS} = 3\overrightarrow{b} 3\overrightarrow{a}$. Express \overrightarrow{PS} and \overrightarrow{RS} in terms of \overrightarrow{a} and \overrightarrow{b} .
- 8. An airplane is heading due south at a speed of 500km/h when it encounters a head wind fro the south at 40km/h. What is the resultant ground veloity of the airplane?
- 9. If A B and C are three collinear points with B at the midpoint of AC and O is any point not on the line AC, prove that $\overrightarrow{OA} + \overrightarrow{OC} = 2\overrightarrow{OB}$. (Hint: $\overrightarrow{AB} = \overrightarrow{BC}$)

©Raise My Marks 2021

3 / 4

- 10. ABCD is aparallelogram. If $\overrightarrow{AB} = \overrightarrow{x}$ and $\overrightarrow{DA} = \overrightarrow{y}$, express $\overrightarrow{BC}, \overrightarrow{DC}, \overrightarrow{BD}$ and \overrightarrow{AC} in terms of \overrightarrow{x} and \overrightarrow{y} .
- 11. The vector \overrightarrow{m} is collinear (parallel) to \overrightarrow{b} but in the opposite direction. Express the magnitude of $\overrightarrow{m} + \overrightarrow{n}$ in terms of the magnitudes of \overrightarrow{m} and \overrightarrow{n} .
- 12. The vectors \overrightarrow{p} and \overrightarrow{q} are distinct unit vectors that are placed in a tail-to-tail position. If these two vectors have an angle of 60° between them, determine $|2\overrightarrow{p} \overrightarrow{q}|$.
- 13. Given that $|\vec{u}| = 8$ and $|\vec{v}| = 10$ and the angle between vectors \vec{u} and \vec{v} is 60° determine:
 - (a) $|\vec{u} \vec{v}|$
 - (b) the direction of $\overrightarrow{u} \overrightarrow{v}$ relative to \overrightarrow{u}
 - (c) the unit vector in the direction of $\vec{u} + \vec{v}$
 - (d) $|5\vec{u} + 2\vec{v}|$

31.12.3.1.0

©Raise My Marks 2021