Operations on vectors in \mathbb{R}^2 and \mathbb{R}^3

Operations on vectors in \mathbb{R}^2 and \mathbb{R}^3

Let's start by defining the *unit vectors* in \mathbb{R}^2 and \mathbb{R}^3 . Unit vectors in \mathbb{R}^2 :

$$\hat{i} = (1,0), \ \hat{j} = (0,1)$$

Unit vectors in \mathbb{R}^3 :

$$\hat{i} = (1, 0, 0), \ \hat{j} = (0, 1, 0), \ \hat{k} = (0, 0, 1)$$

With these unit vectos we can represent vectors in \mathbb{R}^2 and $\mathbb{R}63$ in a couple of different ways.

(a) The first way is using unit vectors. For the point P(-3, 2) the position vector \overrightarrow{OP} is (-3, 2) which can be written as,

$$-3\hat{i} + 2\hat{j} = \overrightarrow{OP}$$

Similarly for point P(-1, 2, 4) in \mathbb{R}^3 ,

$$\overrightarrow{OP} = -\hat{i} + 2\hat{j} + 4\hat{k}$$

(b) The second way is to take a unit vector representation of a vector and rewrite in component for. For,

$$\overrightarrow{OA} - 02\hat{i} + 3\hat{j} = (-2, 3).$$

For,

$$\overrightarrow{OP} = 2\hat{i} - 3\hat{j} + 4\hat{k} = (2, -3, 4)$$

Adding two vectors in \mathbb{R}^2 or \mathbb{R}^3

In \mathbb{R}^2 : For two position vectors $\overrightarrow{a} = (a, b)$ and $\overrightarrow{c} = (c, d)$ in \mathbb{R}^2 ,

$$\overrightarrow{a} + \overrightarrow{c} = (a + c, b + d)$$

In \mathbb{R}^3 : Similarly, in \mathbb{R}^3 , for two position vectors $\overrightarrow{v} = (a, b, c)$, $\overrightarrow{u} = (x, y, z)$ in \mathbb{R}^3 ,

$$\overrightarrow{v} + \overrightarrow{u} = (a + x, b + y, c + z)$$

Scalar multiplication of a vector in \mathbb{R}^2 or \mathbb{R}^3

In \mathbb{R}^2 : For $k \in \mathbb{R}$ and $\overrightarrow{v} = (a, b)$ in \mathbb{R}^2 , $k \overrightarrow{v} = (ka, kb)$. In \mathbb{R}^3 : For $k \in \mathbb{R}$ and $\overrightarrow{v} = (a, b, c)$ in \mathbb{R}^3 , $k \overrightarrow{v} = (ka, kb, kc)$.

Finding the position vector between two points A and B in \mathbb{R}^2 or \mathbb{R}^3

In \mathbb{R}^2 : If $A(x_1, y_1)$ and $B(x_2, y_2)$ are two poitns in \mathbb{R}^2 then the vector \overrightarrow{AB} with head B and tail A is given by,

$$(x_2 - x_1, y_2 - y_1) = \overrightarrow{AB}$$

In \mathbb{R}^3 : If $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ are two points in \mathbb{R}^3 then the vector \overrightarrow{AB} in \mathbb{R}^3 is given by,

$$(x_2 - x_1, y_2 - y_1, z_2 - z_1) = \overrightarrow{AB}$$

Magnitude of \overrightarrow{AB} in \mathbb{R}^2 or \mathbb{R}^3

In \mathbb{R}^2 : For $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1)$ in \mathbb{R}^2 the magnitude is given by,

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

In \mathbb{R}^3 : For $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$ in \mathbb{R}^3 the magnitude is given by,

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_2)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Example

For point A(3, -1), B(-2, 1) and C(1, 1) find the following,

- (a) write the position vector for points A and C using unit vectors.
- (b) Write the position vectors for B ad C using component form.
- (c) Find the vector \overrightarrow{AC} .
- (d) Find the vector $3\overrightarrow{BC}$.
- (e) Find the magnitude of the vector \overrightarrow{AB} .

Solution

(a)

$$\begin{array}{rcl} \overrightarrow{OA} &=& 3\hat{i} - \hat{j} \\ \overrightarrow{OC} &=& \hat{i} + \hat{j} \end{array}$$

(b)

$$\overrightarrow{OB} = (-2, 1)$$

$$\overrightarrow{OC} = (1, 1)$$

(c) $\overrightarrow{AC} = (1,1) - (3,-1) = (1-3.1-(-1)) = (-2,2)$

(d) $\overrightarrow{BC} = (-2, 1) - (1, 1) = (-2 - 1, 1 - 1) = (-3, 0)$ Therefore, $3\overrightarrow{BC} = 3(-3, 0) = (-9, 0)$.

(e)

$$\overrightarrow{AB} = (-2,1) - (3,-1) = (-2-3,1-(-1)) = (-5,2)$$

 $|\overrightarrow{AB}| = \sqrt{(-5)^2 + 2^2}$
 $= \sqrt{25+4} = \sqrt{29}$

Exercises

- 1. (a) Write the vector $\overrightarrow{OA} = (-1, 2, 4)$ using the standard unit vectors.
 - (b) Determine $|\overrightarrow{OA}|$
- 2. Write the vector $\overrightarrow{OB} = 3\hat{i} + 4\hat{j} 4\hat{k}$ in component form and calculate its magnitude.
- 3. If $\overrightarrow{a} = (1, 3, -3)$, $\overrightarrow{b} = (-3, 6, 12)$ and $\overrightarrow{c} = (0, 8, 1)$, determine, $\left| \overrightarrow{a} + \frac{1}{3} \overrightarrow{b} \overrightarrow{c} \right|.$
- 4. For the vectors $\overrightarrow{OA} = (-3, 4, 12)$ and $\overrightarrow{OB} = (2, 2, -1)$, determine the following:
 - (a) the components of vectors \overrightarrow{OP} , where $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{OB}$
 - (b) $|\overrightarrow{OA}|, |\overrightarrow{OB}, \text{ and } |\overrightarrow{OP}|$
 - (c) \overrightarrow{AB} and $|\overrightarrow{AB}|$. What does \overrightarrow{AB} represent?
- 5. Given $\overrightarrow{x} = (1, 4, -1)$, $\overrightarrow{y} = (1, 3, -2)$ and $\overrightarrow{z} = (-2, 1, 0)$, determine a vector equivalent to each of the following:
 - (a) $\overrightarrow{x} 2\overrightarrow{y} \overrightarrow{z}$
 - (b) $-2\overrightarrow{x} 3\overrightarrow{y} + \overrightarrow{z}$
 - (c) $\frac{1}{2}\overrightarrow{x} \overrightarrow{y} + 3\overrightarrow{z}$
 - (d) $3\overrightarrow{x} + 5\overrightarrow{y} + 3\overrightarrow{z}$
- 6. Given $\overrightarrow{p} = 2\hat{i} \hat{j} + \hat{k}$ and $\overrightarrow{q} = -\hat{i} \hat{j} + \hat{k}$, determine the following in terms of the standard unit vectors,
 - (a) $\overrightarrow{p} + \overrightarrow{q}$
 - (b) $\overrightarrow{p} \overrightarrow{q}$

- (c) $2\overrightarrow{p} 5\overrightarrow{q}$
- (d) $-2\overrightarrow{p} + 5\overrightarrow{q}$
- 7. If $\overrightarrow{m} = 2\hat{i} \hat{k}$ and $\hat{n} = -2\hat{i} + \hat{j} + 2\hat{k}$, calculate each of the following:
 - (a) $|\overrightarrow{m} \overrightarrow{n}|$
 - (b) $|\overrightarrow{m} + \overrightarrow{n}|$
 - (c) $|2\overrightarrow{m} + 3\overrightarrow{n}|$
 - (d) $|-5\overrightarrow{m}|$
- 8. Given $\overrightarrow{x} + \overrightarrow{y} = -\hat{i} + 2\hat{j} + 5\hat{k}$ and $\overrightarrow{x} \overrightarrow{y} = 3\hat{i} + 6\hat{j} \hat{k}$, determine \overrightarrow{x} and \overrightarrow{y} .
- 9. Given the points A(-2, -6, 3) and B(3, -4, 12) determine each of the following:
 - (a) $|\overrightarrow{OA}|$
 - (b) $|\overrightarrow{OB}|$
 - (c) \overrightarrow{AB}
 - (d) $|\overrightarrow{AB}|$
 - (e) \overrightarrow{AB}
 - (f) $|\overrightarrow{BA}|$
- 10. Given $2\overrightarrow{x} + \overrightarrow{y} 2\overrightarrow{z} = \overrightarrow{0}, \overrightarrow{x} = (-1, b, c), \overrightarrow{y} = (a, -2, c),$ and $\overrightarrow{z} = (-a, 6, c),$ determine the values of the unknowns, a, b, c.