
Scalar Multiplication of Vectors

RaiseMyMarks.com
2021

Scalar Multiplication of Vectors

Let k be a scalar and \overrightarrow{v} a vector then $\overrightarrow{w} = k \overrightarrow{v}$ is the resultant vector.

Example

Let \overrightarrow{v} be the following vector

For each of the following scalrs, draw the resultant vectors.

- (a) k = -2
- (b) k = 3
- (c) k = 0
- (d) $k = \frac{1}{2}$

Solution

- (a) The negative sign changes the direction of the vector 180°. The number 2 double the magnitude.
- (b) $3\overrightarrow{v}$
- (c) $0\overrightarrow{v}$ is a point. The 0 affects the magnitude and reduces it to 0. Therefore, we end up with a point.
- (d) The resultant vector has half the magnitude but is in the same direction.

Collinear Vectors

Two vectors \overrightarrow{u} and \overrightarrow{v} are sind to be collinear if and only if it is possible to find a non-zero scalar k such that $\overrightarrow{u} = k \overrightarrow{v}$

Unit Vector

A unit vector is a vector with magnitude equal to 1.

For any vector \overrightarrow{v} a unit vector in the direction \overrightarrow{v} can be created. How? Provided \overrightarrow{v} is not the zero vector, we can create a vector $\overrightarrow{u} = \frac{\overrightarrow{v}}{|\overrightarrow{v}|}$ that is in the direction \overrightarrow{v} and has magnitude 1. Let's show \overrightarrow{u} has magnitude 1.

$$|\overrightarrow{u}| = \left| \frac{\overrightarrow{v}}{|\overrightarrow{v}|} \right| = \frac{1}{|\overrightarrow{v}|} |\overrightarrow{v}| = 1$$

Exercises

- 1. An airplane is flying at an airspeed of 300km/h. Using a scale of 1 cm equivalent to 50km/h, draw a velocity vector to represent each of the following
 - (a) a speed of 150km/h heading in the direction of N45°E
 - (b) a speed of 450km/h heading in the direction E15°S
 - (c) a speed of 100km/h heading in an easterly direction
 - (d) a speed of 300km/h heading on a bearing of 345°
- 2. An airplane's direction is E25°N. Explain why this is the same as N65°E or a bearing of 65°.
- 3. The vector \overrightarrow{v} has magnitude 2 i.e. $|\overrightarrow{v}| = 2$. Draw the following vectors and express each of them as a scalar multiple of \overrightarrow{v} .
 - (a) a vector in the same direction as \overrightarrow{v} with twice its magnitude
 - (b) a vector in the same direction as \overrightarrow{v} with one-half its magnitude
 - (c) a vector in the opposite direction as \overrightarrow{v} with two-thirds its magnitude
 - (d) a vector in the opposite direction as \overrightarrow{v} with twice its magnitude
 - (e) a unit vector in the same direction as \overrightarrow{v}
- 4. Three collinear vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are such that $\overrightarrow{a} = \frac{2}{3}\overrightarrow{b}$ and $\overrightarrow{a} = \frac{1}{2}\overrightarrow{c}$.
 - (a) Determine integer values for m and n such that $m\overrightarrow{c} + n\overrightarrow{b} = \overrightarrow{0}$. How many values are possible for m and n to make this statement true?

- (b) Determine integer values for d, e and f such that $d\overrightarrow{d} + e\overrightarrow{b} + f\overrightarrow{c} = \overrightarrow{0}$. Are these values unique?
- 5. The vectors \overrightarrow{a} and \overrightarrow{b} are perpendicular. Are the vectors $4\overrightarrow{a}$ and $-2\overrightarrow{b}$ are perpendicular? Illustrate your answer with a sketch.
- 6. If the vectors \overrightarrow{a} and \overrightarrow{b} are noncollinear, determine which of the following paris of vectors are collinear and which are not.
 - (a) $2\overrightarrow{a}$, $-3\overrightarrow{a}$
 - (b) $2\overrightarrow{a}$, $3\overrightarrow{a}$
 - (c) $5\overrightarrow{a}, -\frac{3}{2}\overrightarrow{b}$
 - (d) $-\overrightarrow{b}$, $2\overrightarrow{b}$
- 7. The vectors \overrightarrow{x} and \overrightarrow{y} are unit vectors that make and angle of 90° with each other. Calculate the value of $|2\overrightarrow{x} + \overrightarrow{y}|$ and the direction of $2\overrightarrow{x} + \overrightarrow{y}$.
- 8. The vectors \overrightarrow{x} and \overrightarrow{y} are unit vectors that make an angle of 30° with each other. Calculate the value of $|2\overrightarrow{x} + \overrightarrow{y}|$ and the direction of $2\overrightarrow{x} + \overrightarrow{y}$
- 9. Draw rhombus ABCS where AB = 3cm. For each of the following, name two vectors \overrightarrow{u} and \overrightarrow{v} in you rdiagram such that,
 - (a) $\overrightarrow{u} = \overrightarrow{v}$
 - (b) $\overrightarrow{u} = 2\overrightarrow{v}$
 - (c) $\overrightarrow{u} = -\overrightarrow{v}$
 - (d) $\overrightarrow{u} = 0.5\overrightarrow{v}$