Operations on vectors in \mathbb{R}^2 and \mathbb{R}^3

RaiseMyMarks.com 2021

Operations on vectors in \mathbb{R}^2 and \mathbb{R}^3

Let's start by defining the *unit vectors* in \mathbb{R}^2 and \mathbb{R}^3 . Unit vectors in \mathbb{R}^2 : $\hat{i} = (1,0), \ \hat{j} = (0,1)$

Unit vectors in \mathbb{R}^3 :

 $\hat{i} = (1, 0, 0), \ \hat{j} = (0, 1, 0), \ \hat{k} = (0, 0, 1)$

 $\ge x$

31.12.2.1.0

©Raise My Marks 2021

With these unit vectos we can represent vectors in \mathbb{R}^2 and $\mathbb{R}63$ in a couple of different ways.

(a) The first way is using unit vectors. For the point P(-3, 2) the position vector \overrightarrow{OP} is (-3, 2) which can be written as,

$$-3\hat{i} + 2\hat{j} = \overrightarrow{OP}$$

Similarly for point P(-1, 2, 4) in \mathbb{R}^3 ,

$$\overrightarrow{OP} = -\hat{i} + 2\hat{j} + 4\hat{k}$$

(b) The second way is to take a unit vector representation of a vector and rewrite in component for. For,

$$\overrightarrow{OA} - 02\hat{i} + 3\hat{j} = (-2,3).$$

For,

$$\overrightarrow{OP} = 2\hat{i} - 3\hat{j} + 4\hat{k} = (2, -3, 4)$$

Adding two vectors in \mathbb{R}^2 or \mathbb{R}^3

In \mathbb{R}^2 : For two position vectors $\overrightarrow{a} = (a, b)$ and $\overrightarrow{c} = (c, d)$ in \mathbb{R}^2 ,

$$\overrightarrow{a} + \overrightarrow{c} = (a + c, b + d)$$

In \mathbb{R}^3 : Similarly, in \mathbb{R}^3 , for two position vectors $\overrightarrow{v} = (a, b, c), \overrightarrow{u} = (x, y, z)$ in \mathbb{R}^3 ,

$$\overrightarrow{v} + \overrightarrow{u} = (a + x, b + y, c + z)$$

Scalar multiplication of a vector in \mathbb{R}^2 or \mathbb{R}^3

In \mathbb{R}^2 : For $k \in \mathbb{R}$ and $\overrightarrow{v} = (a, b)$ in \mathbb{R}^2 , $k \overrightarrow{v} = (ka, kb)$. In \mathbb{R}^3 : For $k \in \mathbb{R}$ and $\overrightarrow{v} = (a, b, c)$ in \mathbb{R}^3 , $k \overrightarrow{v} = (ka, kb, kc)$.

©Raise My Marks 2021

3 / 7

31.12.2.1.0

Finding the position vector between two points A and B in \mathbb{R}^2 or \mathbb{R}^3

In \mathbb{R}^2 : If $A(x_1, y_1)$ and $B(x_2, y_2)$ are two points in \mathbb{R}^2 then the vector \overrightarrow{AB} with head B and tail A is given by,

$$(x_2 - x_1, y_2 - y_1) = \overrightarrow{AB}$$

In \mathbb{R}^3 : If $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ are two points in \mathbb{R}^3 then the vector \overrightarrow{AB} in \mathbb{R}^3 is given by,

$$(x_2 - x_1, y_2 - y_1, z_2 - z_1) = AB$$

Magnitude of \overrightarrow{AB} in \mathbb{R}^2 or \mathbb{R}^3

In
$$\mathbb{R}^2$$
: For $AB = (x_2 - x_1, y_2 - y_1)$ in \mathbb{R}^2 the magnitude is given by,
 $|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

In \mathbb{R}^3 : For $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$ in \mathbb{R}^3 the magnitude is given by,

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_2)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Example

For point A(3, -1), B(-2, 1) and C(1, 1) find the following,

- (a) write the position vector for points A and C using unit vectors.
- (b) Write the position vectors for B ad C using component form.
- (c) Find the vector \overrightarrow{AC} .
- (d) Find the vector $3\overrightarrow{BC}$.
- (e) Find the magnitude of the vector \overrightarrow{AB} .

31.12.2.1.0

©Raise My Marks 2021

4 / 7

Solution

(a)

$$\overrightarrow{OA} = 3\hat{i} - \hat{j}$$

$$\overrightarrow{OC} = \hat{i} + \hat{j}$$

(b)

$$\overrightarrow{OB} = (-2,1)$$
$$\overrightarrow{OC} = (1,1)$$

$$\overrightarrow{AC} = (1,1) - (3,-1) = (1 - 3.1 - (-1)) = (-2,2)$$

(d)

(c)

$$\overrightarrow{BC} = (-2, 1) - (1, 1) = (-2 - 1, 1 - 1) = (-3, 0)$$

Therefore, $3\overrightarrow{BC} = 3(-3, 0) = (-9, 0).$

(e)

$$\overrightarrow{AB} = (-2,1) - (3,-1) = (-2 - 3, 1 - (-1)) = (-5,2)$$

$$\overrightarrow{AB} = \sqrt{(-5)^2 + 2^2}$$

$$= \sqrt{25 + 4} = \sqrt{29}$$

31.12.2.1.0

©Raise My Marks 2021

5 / 7

Exercises

- 1. For the vector $\overrightarrow{OA} = 3\hat{i} 4\hat{j}$, calculate $|\overrightarrow{OA}|$.
- 2. (a) If aî + 5j = (-3, b), determine the values of a and b.
 (b) Calculate |(-3, b)| after finding b.
- 3. If $\overrightarrow{a} = (-60, 11)$ and $\overrightarrow{b} = (-40, -9)$, calculate each of the following,
 - (a) $|\vec{a}|$ and $|\vec{b}|$ (b) $|\vec{a} + \vec{b}|$ and $|\vec{a} - \vec{b}|$
- 4. Find a single vector equivalent to each of the following:
 - (a) 2(-2,3) + (2,1)(b) -3(4,-9) - 9(2,3)

(c)
$$-\frac{1}{2}(6, -2) + \frac{2}{3}(6, 15)$$

5. Given $\overrightarrow{x} = 2\hat{i} - \hat{j}$ and $\overrightarrow{y} = -\hat{i} + 5\hat{j}$, find a vector equivalent to each of the following:

(a)
$$3\overrightarrow{x} - \overrightarrow{y}$$

(b) $-(\overrightarrow{x} + 2\overrightarrow{y}) + 3(-\overrightarrow{x} - 3\overrightarrow{y})$
(c) $2(\overrightarrow{x} + 3\overrightarrow{y}) - 3(\overrightarrow{y} + 5\overrightarrow{x})$
(d) $|\overrightarrow{x} + \overrightarrow{y}|$
(e) $|\overrightarrow{x} - \overrightarrow{y}|$
(f) $|2\overrightarrow{x} - 3\overrightarrow{y}|$
(g) $|3\overrightarrow{y} - 2\overrightarrow{x}|$

6. Parallelogram OBCD is determined by the vectors $\overrightarrow{OA} = (6,3)$ and $\overrightarrow{OB} = (11,-6)$.

31.12.2.1.0

©Raise My Marks 2021

6 / 7

- (a) Determine \overrightarrow{OC} , \overrightarrow{BA} and \overrightarrow{BC} .
- (b) Verify that $|\overrightarrow{OA}| = |\overrightarrow{BC}|$
- 7. $\triangle ABC$ has vertices at A(2,3), B(6,6) and C(-4,11).
 - (a) Sketch and label each of the points on a graph.
 - (b) Calculate each of the lengths $|\overrightarrow{AB}|, |\overrightarrow{AC}|$ and $|\overrightarrow{CB}|$.
 - (c) Verify that triangle ABC is a right triangle.
- 8. Determine the value of x and y in each of the following:

(a)
$$3(x, 1) - 5(2, 3y) = (11, 33)$$

(b)
$$-2(x, x+y) - 3(6, y) = (6, 4)$$

- 9. A(5,0) and B(0,2) are points on the x- and y- axes, respectively.
 - (a) Find the coordinates of point P(a,0) on the x-axis such that $|\overrightarrow{PA}| = |\overrightarrow{PB}|$.
 - (b) Find the coordinates of a point on the y-axis such that $|\overrightarrow{QB}| = |\overrightarrow{QA}|$.
- 10. Find the components of the unit vector in the direction opposite to \overrightarrow{PQ} where $\overrightarrow{OP} = (11, 19)$ and $\overrightarrow{OQ} = (2, -21)$.