Distance from a point to a line in \mathbb{R}^2 and \mathbb{R}^3

RaiseMyMarks.com 2021 Distance from a point to a line in \mathbb{R}^2 and \mathbb{R}^3

l: y = mx + b

Recall how we would have to find the distance between a point and a line l in \mathbb{R}^2 . We would have to,

- 1. Find the equation of the line l_1 through P and perpendicular to the given line l. Recall that the slope of the line l_1 , perpendicular to l, is $-\frac{1}{m}$.
- 2. Find the point of intersection Q of lines l_1 and l.
- 3. Find the distance between the points P and Q.

In \mathbb{R}^2

31.12.11.1.0

©Raise My Marks 2021

Let $P_0(x_0, y_0)$ and $P_1(x_1, y_1)$. We will use the Cartesian equation of the line l given by l: Ax + By + C = 0. In the above diagram d is the scalar project of $\overline{P_1P_0}$ onto PR. Letting θ be the angle between $\overline{P_1P_0}$ and PR we have,

$$d = |\overrightarrow{P_1P_0}| \cos \theta$$
$$|\overrightarrow{P_1P_0} \cdot \overrightarrow{n}| = |\overrightarrow{P_1P_0}| |\overrightarrow{n}| \cos \theta$$
$$\frac{|\overrightarrow{P_1P_0} \cdot \overrightarrow{n}|}{|\overrightarrow{n}|} = |\overrightarrow{P_1P_0}| \cos \theta = d$$
$$\frac{|(x_1 - x_0, y_1 - y_0) \cdot (A, B)|}{\sqrt{A^2 + B^2}} = d$$
$$\frac{|A(x_1 - x_0) + B(y_1 - y_0)|}{\sqrt{A^2 + B^2}} = d$$
$$\frac{|Ax_1 - Ax_0 + By_1 - By_0|}{\sqrt{A^2 + B^2}} = d$$
$$\frac{|Ax_1 + By_1 - Ax_0 - By_0|}{\sqrt{A^2 + B^2}} = d$$
$$\frac{|-C - Ax_0 - By_0|}{\sqrt{A^2 + B^2}} = d$$

Therefore, the distance from a point to a line in \mathbb{R}^2 is given by,

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

In \mathbb{R}^3

Let's consider the same situation in \mathbb{R}^3 .

31.12.11.1.0

©Raise My Marks 2021

3 / 6

Let $P_0(x_0, y_0, z_0)$ and $P_1(x_1, y_1, z_1)$. Let's consider the vector question of the line $l: \overrightarrow{r} = \overrightarrow{r_0} + t\overrightarrow{m}$, where $\overrightarrow{r_0} = (a, b, c)$ and direction vector $\overrightarrow{m} = (m_1, m_2, m_3)$. The distance d between P - 0 and the line l is $d = |\overrightarrow{P_1P_0}| \sin \theta$, where θ is the angle between $\overrightarrow{P_1P_0}$ and PQ. Recall the cross product,

$$d = |\overrightarrow{P_1P_0}|\sin\theta$$
$$|\overrightarrow{m} \times \overrightarrow{P_1P_0}| = |\overrightarrow{m}||\overrightarrow{P_1P_0}|\sin\theta$$
$$\frac{|\overrightarrow{m} \times \overrightarrow{P_1P_0}|}{|\overrightarrow{m}|} = |\overrightarrow{P_1P_0}|\sin\theta = d$$

Therefore, the distance from a point to a line in \mathbb{R}^3 is given by,

$$d = \frac{|\overrightarrow{m} \times \overrightarrow{P_1 P_0}|}{|\overrightarrow{m}|}$$

31.12.11.1.0

©Raise My Marks 2021

4 / 6

Exercises

- 1. Determine the distance from P(-4, 5) to each of the following lines,
 - (a) 3x + 4y 5 = 0
 - (b) 5x 12y + 24 = 0
 - (c) 9x 40y = 0
- 2. Determine the distance between the following parallel lines,

(a)
$$2x - y + 1 = 0$$
, $2x - y + 6 = 0$

- (b) 7x 24y + 168 = 0, 7x 24y 336 = 0
- 3. Determine the distance from P(-2, 3) to each of the following lines,
 - (a) $\overrightarrow{r} = (-1, 2) + s(3, 4), \ s \in \mathbb{R}$
 - (b) $\overrightarrow{r} = (1,0) + t(5,12), \ t \in \mathbb{R}$
 - (c) $\overrightarrow{r} = (1,3) + p(7,-24), \ p \in \mathbb{R}$
- 4. Calculate the distance between the following lines,

(a)

$$\frac{x-1}{4} = \frac{y}{-3}, \quad \frac{x}{4} = \frac{y+1}{-3}$$

(b)

 $5x + 12y = 120, \ 5x + 12y + 120 = 0$

- 5. Calculate the distance between point P and the given line.
 - (a) P(1, 2, -1); $\overrightarrow{r} = (1, 0, 0) + s(2, -1, 2), s \in \mathbb{R}$
 - (b) P(0, -1, 0); $\overrightarrow{r} = (2, 1, 0) + t(-4, 5, 20), t \in \mathbb{R}$
 - (c) P(2, 3, 1); $\overrightarrow{r} = p(12, -3, 4), \ p \in \mathbb{R}$

31.12.11.1.0

©Raise My Marks 2021

- 6. (a) Determine the coorindates of the point on the line → r = (1,-1,2) + s(1,3,-1), s ∈ ℝ, that produces the shortest distance between the line and a point with coordinates (2, 1, 3).
 - (b) What is the distance between the given point and the line?
- 7. Two planes with equations x y + 2z = 2 and x + y z = -2intersect along line *l*. Determine the distance from P(-1, 2, -1) to *l*, and determine the coordinates of the point on *l* that vies the minimal distance.

31.12.11.1.0

©Raise My Marks 2021