The Intersection of Planes

RaiseMyMarks.com 2021

1

The Intersection of Two Planes

Line of intersection

Plane of intersection

31.12.10.1.0

©Raise My Marks 2021

the

tti

Intersection of Three Planes

Point of intersection

Line of Intersection

31.12.10.1.0

©Raise My Marks 2021

Plane of Intersection

π3π, π,

Since the equations of lines and planes are all "linear", the above situations all result in a consistent linear system. What does the situation look like graphically when the linear system is inconsistent?

Inconsistent Systems

Two Planes

Two planes create an inconsistent system when the planes are parallel.

31.12.10.1.0

©Raise My Marks 2021

4 / 8

Three Planes

Three planes create an inconsistent system when at least two of the planes are parallel.

31.12.10.1.0

©Raise My Marks 2021

Vectors

The other case when three planes create an inconsistent system is when the three planes create a *trianglar prism*.

31.12.10.1.0

©Raise My Marks 2021

6 / 8

Exercises

- 1. Given the following systems of questions,
 - i) State whether the planes intersect. If they do, specify whether it's plane or line of intersection.
 - ii) Determine the solution of each of the systems of equations.

(a)

 $\begin{array}{rcl} x+y+z &=& 1\\ 2x+2y+2z &=& 2 \end{array}$

(b)

 $\begin{array}{rcl} x - y + 2z &=& 2 \\ x + y + 2x &=& -2 \end{array}$

(c)

2x - y + 2z = 2-x + 2y + z = 1

2. A system of equations is give below,

$$x + y + 2z = 1$$
$$kx + 2y + 4z = k$$

- (a) For what value of k does the system have an infinite number of solutions? Determine the solution to the system for this value of k.
- (b) Is there any value of k for which the system does not have a solution? Justify.

©Raise My Marks 2021

7 / 8

31.12.10.1.0

- 3. For the planes 2x y + 2z = 0 and 2x + y + 6z = 4, show that their line of intersection lies on the plane with equation 5x + 3y + 16z 11 = 0.
- 4. The line of intersection of the planes $\pi_1 : 2x + y 3z = 3$ and $\pi_2 : x 2y + z = -1$ is a line *l*.
 - (a) Determine parametric equations for l.
 - (b) If l meets the xy-plane at point A and the z-axis at point B, determine the length of line segment AB.

31.12.10.1.0

©Raise My Marks 2021