## Composition of Functions - Identifying fand $g$

## Raise My MA.ks

RaiseMyMarks.com

2020

## What is the composition of functions?

The composition of functions means, one function is inserted into the another funcionn where a variable would normally go. If we consider functions $f(x)$ and $g(x)$, the composition of two functions $f$ and $g$ means, the function $g$ is inserted into the function $f$ as the value of $x$, or $x=g(t)$ for $f(x)$. Let's a look at an example to get a better idea of what this means and looks like.

## Example

Let's look at the compostion of two plynomials. For example, let's consider

$$
f(x)=x^{2}+3 x-1 \text { and } g(t)=t+1 \text {. }
$$

What is the composition of $f$ and $g$ or in notation, what is $f \circ g$ ?

Solution The compoistion of $f$ and $g$ looks like,

$$
f \circ g(t) \text { or } f(g(t))
$$

and is given by,

$$
\begin{aligned}
f(g(t)) & =f(t+1), \text { where } x=g(t)=t+1 \\
& =(t+1)^{2}+3(t+1)-1 \\
& =\left(t^{2}+2 t+1\right)+(3 t+3)-1 \\
& =t^{2}+2 t+1+3 t+3-1 \\
\therefore f(g(t)) & =t^{2}+5 t+3
\end{aligned}
$$

is the resulting polynomial.

## Evaluating a composite function

Let's try another example but this time we want to evaluate the composite function $f \circ g$ at a particular value for $x$.

## Example

Given $f(x)=4 x+1$ and $g(x)=-x^{2}$. Determine, (a) $f(g(-1))$ and (b) $g \circ f(0)$.

## Solution:

a) There are two ways we can apprach this exercises.

1. We can first determine what the composite function $f(g(x))$ looks like then let $x=-1$ and evaluate. Let's do this and see what we get.

$$
\begin{aligned}
f(g(x)) & =f\left(-x^{2}\right) \text { where } g(x)=-x^{2} \\
& --4 x^{2}+1
\end{aligned}
$$

Now we let $x=-2$ in our function $f(g(x))=-4 x^{2}+1$.

$$
\begin{aligned}
f(g(-1)) & =-4(-1)^{2}+1 \\
& =-4+1 \\
& =-3
\end{aligned}
$$

Therefore, $f(g(-1))=-3$.
2. The second way to determine the value $f(g(-1))$ is to first find the value $g(-1)$, then plug in this new value in for $x$ in $f$. Let's do this.
i. First: $g(-1)=-(-1)^{2}=-1$.
ii. Second: $f(g(-1))=f(-1)=4(-1)+1=-4+1=-3$

Therefore, $f(g(-1))=-3$
So, both ways gave the same answer. The second way, is much quicker.
b) Let's use the second way to find $g \circ f(0)$.

1. First we need to find $f(0) . f(0)=4(0)=1=1$
2. Second, we need to evaluate $g$ at $f(0)=1$. So, $g(f(0))=g(1)=$ $-(1)^{2}=-1$.

Therefore, $g \circ f(0)=-1$.

## Exercises

Given $f(x)=2-x^{2}$ and $g(x)=-3 x$, determine the following values, (a) $f(-1)$
(b) $g \circ f(-1)$
(c) $g(0)$
(d) $f(g(0))$
(e) $f(2)$
(f) $g(f(2))$
(g) $f \circ g(-2))$
(h) $g \circ g(0)$
(i) $f(f(1))$

