Geometric Series

RaiseMyMarks.com

2021

1

Geometric Series

A geometric series is the sum of the terms in a geometric sequence. Let's consider the geometric sequences and then sums.

$$\sum_{1} = 3 + 6 + 12 + 24 + 48 + 96 + \cdots$$
$$\sum_{2} = 2 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + \cdots$$
$$\sum_{3} = 2 - 2 + 2 - 2 + 2 - 2 + \cdots$$

Let's consider the sum of the first n terms of the series. We will let the general term of the series be denoted by t_i . This general term is the same as the general term for a geometric sequence. So, $t_i = ar^i$, i = 0, 1, 2, ldots. Now the sum of the first n terms is,

$$S_n = t_0 + t_1 + \dots + t_n$$

= $a + nar + ar^2 + \dots + ar^n$
= $a(1 + r + r^2 + \dots + r^n)$
= $a\left(\frac{1 - r^n}{1 - r}\right)$

Note: $1 + r + r^2 + \dots + r^n = \frac{1 - r^n}{1 - r}, r \neq 1$. So,

$$S_n = a \left(\frac{1-r^n}{1-r}\right) \text{ or } \tag{1}$$
$$S_n = \frac{a-t_n}{1-r} \tag{2}$$

22.11.4.3.0.

©Raise My Marks 2021

2 / 3

Exercises

1. Given the information below, find a_3, a_6 and a_9 for the geometric sequence,

a)
$$a_1 = 8$$
, $a_4 = 320$ f) $a_3 = 18$, $a_5 = 162$

b)
$$a_4 = -\frac{1}{9}, r = \frac{1}{3}$$
 g) $a_7 = -2, r = -\frac{1}{3}$

c) $a_5 = 48$, $a_6 = 96$ h) $a_4 - a_2 = 8$, $a_2 + a_3 = 4$

d)
$$a_4 = \frac{1}{9}, r = -\frac{1}{3}$$
 i) $a_3 = -1, a_7 = \frac{1}{16}$

e)
$$a_7 = 729$$
, $r = 3$ j) $a_5 = 4a_3$, $a_3 + a_0 = 63$

©Raise My Marks 2021