Arithmetic Series

RaiseMyMarks.com
2021

Arithmetic Series

When considering a series, the sum of the entire series in many cases will be infinite. Instead of trying to find the sume of the entire series, why not consider the sum of the first n terms of the series. We'll denote this sum of the first n terms by S_n . If we let a general term of our series be denotes by t_i , S_n is given by the following sum,

$$S_n = t_1 + t_2 + t_3 + \dots + t_n$$

Now, what doe t_i look like? Since we are considering an arithmetic series, the general term t_i is equal to the general term of an arithmetic sequence. So,

$$t_i = a + id, \ i = 0, 1, 2, \dots$$

Now, the sume of the first n terms is,

$$S_{n} = t_{0} + t_{1} + \dots + t_{n}$$

$$= a + (a + d) + (a + 2d) + \dots + (a + nd)$$

$$= a(n + 1) + (1 + 2 + \dots + n)d$$

$$= a(n + 1) + \frac{(n + 1)n}{2}d$$

$$= \frac{2a(n + 1) + dn(n + 1)}{2}$$

$$S_{n} = \frac{(2a + nd)(n + 1)}{2}, n = 0, 1, 2, \dots$$

$$= \frac{(a + (a + nd))(n + 1)}{2}$$

$$= \frac{(a + an)(n + 1)}{2}$$

Note: $1 + 2 + \dots + n = \frac{n(n+1)}{2}$.

Therefore,

$$S_n = \frac{(2a+nd)(n+1)}{2} \text{ or} \tag{1}$$

$$S_n = \frac{(2a+nd)(n+1)}{2} \text{ or}$$

$$S_n = \left(\frac{a+t_n}{2}\right)(n+1)$$
(2)

Exercises

- 1. If the 6^{th} term of an arithmetics sequence is 18 and the 16^{th} term is 48, find the
 - a) common difference, d
 - b) First term
 - c) List four terms
 - d) Find the sume of the first 20 terms.
- 2. Evaluate

$$\sum_{n=1}^{25} \left(\frac{1}{5}n + 2\right)$$

.

3. Find the sum of,

$$4, 1, -2, \ldots, -41$$

4. Find,

$$\frac{5}{8} + \frac{7}{8} + \frac{9}{8} + \dots + \frac{25}{8}$$