Geometric Sequences

RaiseMyMarks.com
2021

Sequences

There are two types of sequences we will consider, arithmetic and geometric. Regardless of the type of sequence, we will call the general term of the sequence t_n and the first term, $t_1 = a$. The value n is the position of the term in the sequence. When writing the term of a sequence, there are two ways: A formula for the general term t_n in terms of n and a recursive formula for t_n that involves the previous, t_{n-1} term. Let's start with arithmetic sequences.

Geometric sequences

A geometric sequence can be thought of a sequence of numbers where the next number, or term, in the sequence, is the previous value or term multiplied by a fixed value, r, say. Let's consider a few examples to see this idea explicitly.

$$S_1 = 3, 6, 12, 24, 48, 96, \dots$$

 $S_2 = 2, 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, \dots$
 $S_3 = 2, -2, 2, -2, 2, -2, \dots$

If we look at the three geometric sequences above in greater detail we see that for,

sequence S_1 , the sequence starts at 3 and each term is multiplied by 2; sequence S_2 , the sequence starts at 2 and each term is multiplied by 1/2;

sequence S_3 , the sequence starts at 2 and each term is multiplied by -1.

We call the value that the sequence starts at a and the factor that the sequence changes by r. The general term for a geometric sequence is given by,

$$t_n = ar^{n-1}$$

The recursive formula for a geometric sequence is given by,

$$t_n = t_{n-1}r$$

Exercises

- 1. Which sequences are geometric sequences?
 - a) $\{-18, -7, 4, 15, 26, \ldots\}$ g) $\{5, 7, 9, 11, 13, \ldots\}$

- b) $\{1, 2, 4, 8, 16, 32, \ldots\}$
- h) $\{3, 15, 75, 375, 1875, \ldots\}$
- c) $\{1, -1, 1, -1, 1, -1, \ldots\}$
- i) $\{1, 3, 5, 7, 9, \ldots\}$
- d) $\{-1, 3, 7, 11, 15, \ldots\}$
- $(2,2/3,2/9,2/27,2/81,\ldots)$
- e) $\{7, 4, 1, -2, -5, \ldots\}$

- f) $\{1/2, 1/4, 1/8, 1/16, \ldots\}$ k) $\{20, 200, 2000, 20000, \ldots\}$
- 22.11.2.1.0.

©Raise My Marks 2021

1)
$$\{1,4,7,10,13,16,19,22,25,\ldots\}$$
 $\{88,78,68,58,48,\ldots\}$

o)
$$\{3,6,12,24,\ldots\}$$
 m) $\{2/3,2/9,2/17,2/81,\ldots\}$

p)
$$\{3, 8, 13, 23, 28, 33, 38, \ldots\}$$

2. For the geometric sequences in #1 find a, r, the general term and the recursive term for the sequence.