Zeros or Roots of Polynomials - 3

Raise My

RaiseMyMarks.com

Zeros and Roots of Polynomials

The zeros or roots of a polynomial are the values of the independent variable usually x that result in the polynomial having a value of zero. These are the points on the graph of the polynomial that intersect the x-axis. Let's start by looking at quadratics and see how many possible zeros or roots a quadratic can have and what the graph of that quadratic will look like.

Quadratic

What is a quadratic? A quadratic is a polynomial with degree of 2. The general form of a quadratic is given by,

$$
f(x)=a x^{2}+b x+c, \quad \text { where } a, b, c \in \mathbb{R}
$$

Let's start by considering a quadratic with 2 real roots or zeros.

Two real roots

Let's consider the following example of a quadratic with 2 real roots.

$$
\begin{aligned}
& f(x)=a(x+2)(x-3) \\
& \text { zeros of } f:-2,3 \\
& \text { roots of } f(x)=0:-2, \quad 3
\end{aligned}
$$

What does the graph of this quadratic look like? Let's assume $a>0$.

When $a>1$ we have a thinner, stretched out curve; when $a<1$ we have a flatter curve. When $a<0$ then our curve opens downwards. Since we have two real roots, the curve crosses the x -axis twice.

One real root

Let's consider the following example of a quadratic with only 1 real root.

$$
\begin{aligned}
& f(x)=a(x+2)^{2} \\
& \text { zeros of } f:-2 \\
& \text { roots of } f(x)=0:-2
\end{aligned}
$$

What does the graph of this quadratic look like? Again, let's assume $a>0$.

When $a>1$ we have a thinner, stretched out curve; when $a<1$ we have a flatter, compressed curve; when $a<0$, our curve opens downwards. Since we have only one real root, the curuve touches the x -axis once.

Cubic

What is a cubic? A cubic is a polynomial of degree 3. Recall that the degree of a polynomial is the value of the highest power in the polynomial. A general cubic is given by,

$$
f(x)=a x^{3}+b x^{2}+c x+d
$$

Three real roots

Let's consider the following example of a cubic with 3 real roots.

$$
\begin{aligned}
& f(x)=a(x+2)(x-1)(x-3) \\
& \text { zeros of } f:-2,1,3 \\
& \text { roots of } f(x)=0:-2,1,3
\end{aligned}
$$

What does the graph of this type of cubic look like? Again, we'll assume $a>0$ for our sketch.

Since we have 3 real roots, the graph crosses the x-axis 3 times and at the zeros or roots, $-2,1$ and 3 .

Two real roots

Let's consider the following example of a cubic with 2 real roots.

$$
\begin{aligned}
& f(x)=a(x+2)(x-3)^{2} \\
& \text { zeros of } f:-2,3 \\
& \text { roots of } f(x)=0:-2,3
\end{aligned}
$$

What does the graph of this cubic look like? Assume that $a>0$.

Since we have 2 real roots, the graph crosses or touches the x-axis 2 times. Notice that the factor $(x-3)^{2}$ contributes the zero $x=3$ but is also squared. This zero is the point at which the graph just touches the x -axis.

One real roots

Let's consider the following example of a cubic with 1 real root.

$$
\begin{aligned}
& f(x)=a(x+2)^{3} \\
& \text { zeros of } f:-2 \\
& \text { roots of } f(x)=0:-2
\end{aligned}
$$

What does the graph of this cubic look like? Assume $a>0$. Recall the parent function $f(x)=x^{3}$? We know what the graph of this function looks like. The graph of $f(x)=a(x+2)^{3}$ is this parent function transformted. What are the transformations? The first is the multiplication of $a>0$ which is a stretch or compression depending on whether $a>1$ or $0<a<1$. The second transformation is the translation horizontally to the left 2 units. So the shape of this graph is similar to x^{3} except that the "centre" is at $x=-2$ where the graph crosses the x -axis.

Here are some other examples of what a cubic may look like with one root

Quartic

Four real roots

$$
\begin{aligned}
& f(x)=a(x+2)(x-1)(x-3)(x+4) \\
& \text { zeros of } f:-2,1,3,-4 \\
& \text { roots of } f(x)=0:-2,1,3,-4
\end{aligned}
$$

Three real roots
$f(x)=a(x+2)(x-1)(x-3)^{2}$
zeros of $f:-2,1,3$
roots of $f(x)=0:-2,1,3$

(C)Raise My Marks 2020

Two real roots

$$
\begin{aligned}
& f(x)=a(x+3)(x-1)^{3} \\
& \text { zeros of } f:-3,1 \\
& \text { roots of } f(x)=0:-3,1
\end{aligned}
$$

Note: For the above examples, the diagrams are just one representation of that particular case. There may be other diagrams representing each situation.

Exercises

1. Which funtions are polynomial functions?
a) $f(x)=5 x^{4}+e^{-x}$
b) $f(x)=-\frac{1}{3}(-2 x+1)^{2}+4$
c) $f(x)=\ln x+4$
d) $f(x)=2^{x+4}$
e) $f(x)=x^{3}$
f) $f(x)=2 \sin (x+45)$
2. Draw a sketch of the following functions.
a) $y=\left(x^{2}-1\right)(x-1)(x+)$
b) $y=-(x-10)(x+2)(x-3)(x+3)$
c) $y=x(x+3)(x+1)(x-2)$
d) $y=(x+1)^{2}(x-2)^{2}$
e) $y=-(x-5)(x+2)$
f) $y=(x+2)^{2}(x-3)$
g) $y=-(x+3)(x+2)$
h) $y=(x-3)(x+2)(x+4)$
i) $y=(x+1)(x+3)(x-4)^{2}$
k) $y=-(x+5)^{2}(x-3)$
l) $y=2(x-1)(x+2)(x-2)(x+3)$
m) $y=-\frac{1}{2}(x-5)(x-10)$
