Zeros or Roots of Polynomials - 3

RaiseMyMarks.com

2020

Zeros and Roots of Polynomials

The zeros or roots of a polynomial are the values of the independent variable usually x that result in the polynomial having a value of zero. These are the points on the graph of the polynomial that intersect the x-axis. Let's start by looking at *quadratics* and see how many possible zeros or roots a quadratic can have and what the graph of that quadratic will look like.

Quadratic

What is a quadratic? A quadratic is a polynomial with degree of 2. The general form of a quadratic is given by,

$$f(x) = ax^2 + bx + c$$
, where $a, b, c \in \mathbb{R}$

Let's start by considering a quadratic with 2 real roots or zeros.

Two real roots

Let's consider the following example of a quadratic with 2 real roots.

$$f(x) = a(x + 2)(x - 3)$$

zeros of f : -2, 3
roots of f(x) = 0 : -2, 3

What does the graph of this quadratic look like? Let's assume a > 0.

When a > 1 we have a thinner, stretched out curve; when a < 1 we have a flatter curve. When a < 0 then our curve opens downwards. Since we have two real roots, the curve crosses the x-axis twice.

One real root

Let's consider the following example of a quadratic with only 1 real root.

 $f(x) = a(x+2)^{2}$ zeros of f: -2roots of f(x) = 0: -2

What does the graph of this quadratic look like? Again, let's assume a > 0.

When a > 1 we have a thinner, stretched out curve; when a < 1 we have a flatter, compressed curve; when a < 0, our curve opens downwards. Since we have only one real root, the curve touches the x-axis once.

Cubic

What is a cubic? A cubic is a polynomial of degree 3. Recall that the degree of a polynomial is the value of the highest power in the polynomial. A general cubic is given by,

$$f(x) = ax^3 + bx^2 + cx + d$$

Three real roots

Let's consider the following example of a cubic with 3 real roots.

$$f(x) = a(x+2)(x-1)(x-3)$$

zeros of $f: -2, 1, 3$
roots of $f(x) = 0: -2, 1, 3$

What does the graph of this type of cubic look like? Again, we'll assume a > 0 for our sketch.

Since we have 3 real roots, the graph crosses the x-axis 3 times and at the zeros or roots,-2, 1 and 3.

Two real roots

Let's consider the following example of a cubic with 2 real roots.

$$f(x) = a(x+2)(x-3)^2$$

zeros of $f: -2, 3$
roots of $f(x) = 0: -2, 3$

What does the graph of this cubic look like? Assume that a > 0.

Since we have 2 real roots, the graph crosses or touches the x-axis 2 times. Notice that the factor $(x-3)^2$ contributes the zero x = 3 but is also squared. This zero is the point at which the graph just touches the x-axis.

One real roots

Let's consider the following example of a cubic with 1 real root.

$$f(x) = a(x+2)^{3}$$

zeros of $f: -2$
roots of $f(x) = 0: -2$

What does the graph of this cubic look like? Assume a > 0. Recall the parent function $f(x) = x^3$? We know what the graph of this function looks like. The graph of $f(x) = a(x + 2)^3$ is this parent function transformed. What are the transformations? The first is the multiplication of a > 0 which is a stretch or compression depending on whether a > 1 or 0 < a < 1. The second transformation is the transformation horizontally to the left 2 units. So the shape of this graph is similar to x^3 except that the "centre" is at x = -2 where the graph crosses the x-axis.

Here are some other examples of what a cubic may look like with one root

Quartic Four real roots

f(x) = a(x+2)(x-1)(x-3)(x+4)zeros of f: -2, 1, 3, -4roots of f(x) = 0: -2, 1, 3, -4

Three real roots

$$f(x) = a(x+2)(x-1)(x-3)^{2}$$

zeros of $f: -2, 1, 3$
roots of $f(x) = 0: -2, 1, 3$

Two real roots

Note: For the above examples, the diagrams are just one representation of that particular case. There may be other diagrams representing each situation.

Exercises

- 1. Which functions are polynomial functions?
 - a) $f(x) = 5x^4 + e^{-x}$ b) $f(x) = -\frac{1}{3}(-2x+1)^2 + 4$ c) $f(x) = \ln x + 4$ d) $f(x) = 2^{x+4}$ e) $f(x) = x^3$ f) $f(x) = 2\sin(x+45)$

2. Draw a sketch of the following functions.

a)
$$y = (x^2 - 1)(x - 1)(x +)$$

b) $y = -(x - 10)(x + 2)(x - 3)(x + 3)$
c) $y = x(x + 3)(x + 1)(x - 2)$
d) $y = (x + 1)^2(x - 2)^2$
e) $y = -(x - 5)(x + 2)$
f) $y = (x + 2)^2(x - 3)$

- g) y = -(x+3)(x+2)h) y = (x-3)(x+2)(x+4)i) $y = (x+1)(x+3)(x-4)^2$ j) y = 4(x-1)(x+1)
- k) $y = -(x+5)^2(x-3)$ l) y = 2(x-1)(x+2)(x-2)(x+3)m) $y = -\frac{1}{2}(x-5)(x-10)$