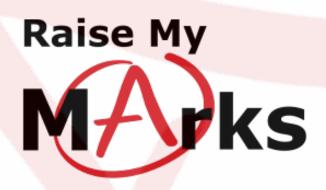
Rules of Differentiation 9



RaiseMyMarks.com

2020

Rules of differentiation

There are a number of rules when taking the derivative of a function. B

Constant Function Rule

If f(x) = K then f'(x) = 0.

The Power Rule

If $f(x) = x^n$ then $f'(x) = nx^{n-1}$ where n is a real number, $n \in \mathbb{R}$.

Constant Multiple Rule

If f(x) = Kg(x) where K is a constant then f'(x) = Kg'(x).

The Sum Rule

If f(x) and g(x) are differentiable functions and F(x) = f(x) + g(x) then F'(x) = f'(x) + g'(x).

Difference Rule

If
$$F(x) = f(x) - g(x)$$
 then $F'(x) = f'(x) - g'(x)$

The Product Rule

If
$$F(x) = f(x)g(x)$$
 then $F'(x) = f'(x)g(x) + f(x)g'(x)$

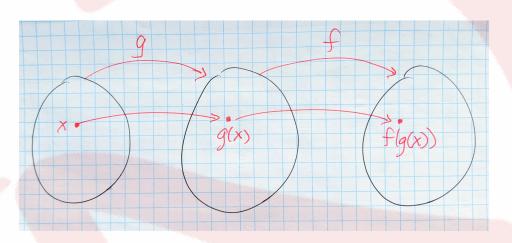
Power Rule

If
$$f(x) = [g(x)]^n$$
 then $f'(x) = n[g(x)]^{n-1}g'(x)$, where $n \in \mathbb{Z}$, n is an integer

The quotient Rule

If
$$F(x) = \frac{f(x)}{g(x)}$$
 then $F'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$

Before we look at the chain rule for differentiation let's' look at the composition of functions. The *composition of two or more functions* can be thought of as taking the function of a function or



The domain of one function is the range of the other function. Given two functions f and g the composite function $f \circ g$ is defined by,

$$(f \circ g)(x) = f(g(x))$$

The chain rule considers the derivative of the composition of two functions.

The Chain Rule

If f and g are differentiable functions and $F(x) = f \circ g(x)$ then

$$F'(x) = f'(g(x))g'(x)$$

Using Leibniz Notation, If y = f(u), u = g(x) then,

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}.$$

Note: The power function rule is a special case of the chain rule where $f(x) = x^n$ and given some function g(x), the derivative of $F(x) = f \circ g(x) = [g(x)]^n$ is

$$f'(x) = n[g(x)]^{n-1}g'(x).$$

Rules of Differentiation 9 - Exercises

Exercises

1. Use the Chain Rule to find $\frac{dy}{dx}$ at the given value of x. a) $y = 3u^2 - 5u + 2$, $u = x^2 - 1$, x = 2

b)
$$y = 2u^3 + u^2$$
, $u = x + x^{1/2}$, $x = 1$

c)
$$y \frac{u^3}{u+1}$$
, $u = (x^2 + 1)^3$, $x = 1$

d)
$$y = \frac{1}{(1+u^2)^2}, u = \sqrt{x} - 1, x = 4$$

e) $y = u^5 + u^3$, $u = \frac{3}{\nu} - 4\nu$, $\nu = 3 - x^2$, x = 2.

2. If $h(x) = x(2x+7)^4(x-1)^2$, find h'(-3).

3. Differentiate,

$$y = \frac{x^2(1-2)^3}{(1+x)^4}$$