Rules of Differentiation 8

Raise My KS

RaiseMyMarks.com

2020

Rules of differentiation

There are a number of rules when taking the derivative of a function. B

Constant Function Rule

If
$$f(x) = K$$
 then $f'(x) = 0$.

The Power Rule

If $f(x) = x^n$ then $f'(x) = nx^{n-1}$ where n is a real number, $n \in \mathbb{R}$.

Constant Multiple Rule

If
$$f(x) = Kg(x)$$
 where K is a constant then $f'(x) = Kg'(x)$.

The Sum Rule

If f(x) and g(x) are differentiable functions and F(x) = f(x) + g(x) then F'(x) = f'(x) + g'(x).

Difference Rule

If
$$F(x) = f(x) - g(x)$$
 then $F'(x) = f'(x) - g'(x)$

The Product Rule

If
$$F(x) = f(x)g(x)$$
 then $F'(x) = f'(x)g(x) + f(x)g'(x)$

Power Rule

If
$$f(x) = [g(x)]^n$$
 then $f'(x) = n[g(x)]^{n-1}g'(x)$, where $n \in \mathbb{Z}$, n is an integer.

The quotient Rule

If
$$F(x) = \frac{f(x)}{g(x)}$$
 then $F'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$

Before we look at the chain rule for differentiation let's' look at the composition of functions. The *composition of two or more functions* can be thought of as taking the function of a function or

The domain of one function is the range of the other function. Given two functions f and g the composite function $f \circ g$ is defined by,

$$(f \circ g)(x) = f(g(x))$$

The chain rule considers the derivative of the composition of two functions.

The Chain Rule

If f and g are differentiable functions and $F(x) = f \circ g(x)$ then

$$F'(x) = f'(g(x))g'(x)$$

Using Leibniz Notation, If y = f(u), u = g(x) then,

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}.$$

Note: The power function rule is a special case of the chain rule where $f(x) = x^n$ and given some function g(x), the derivative of $F(x) = f \circ g(x) = [g(x)]^n$ is

$$f'(x) = n[g(x)]^{n-1}g'(x).$$

Exercises

1. Differentiate.

a)
$$g(x) = (2x - 1)^4 (2 - 3x)^4$$

$$y = \frac{3x+5}{1-x^2}$$

b)
$$y = \frac{(2x-1)^2}{(x-2)^3}$$
 e)
$$h(x) = \frac{\sqrt{1-x^2}}{1-x}$$

c)
$$y = x^4(1 - 4x^2)^3$$

f)
$$s(t) = \left(\frac{t-\pi}{t+6\pi}\right)^{1/3}$$

2. Given
$$y = f(x^2 + 3x - 5)$$
 find $\frac{dy}{dx}$ when $x = 1$, given $f'(-1) = 2$.

3. Let y = g(h(x)) where $h(x) = \frac{x^2}{x+2}$. If g'(9/5) = -2, find $\frac{dy}{dx}$ when x = 3.