
Rules of Differentiation 2

RaiseMyMarks.com

2020

Rules of differentiation

There are a number of rules when taking the derivative of a function. B

Constant Function Rule

If f(x) = K then f'(x) = 0.

The Power Rule

If $f(x) = x^n$ then $f'(x) = nx^{n-1}$ where n is a real number, $n \in \mathbb{R}$.

Constant Multiple Rule

If f(x) = Kg(x) where K is a constant then f'(x) = Kg'(x).

The Sum Rule

If f(x) and g(x) are differentiable functions and F(x) = f(x) + g(x) then F'(x) = f'(x) + g'(x).

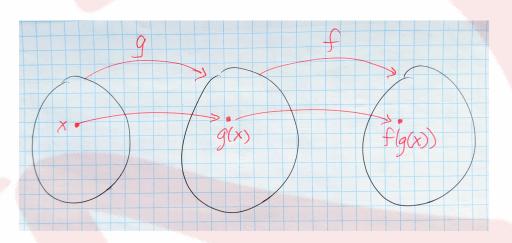
Difference Rule

If
$$F(x) = f(x) - g(x)$$
 then $F'(x) = f'(x) - g'(x)$

The Product Rule

If
$$F(x) = f(x)g(x)$$
 then $F'(x) = f'(x)g(x) + f(x)g'(x)$

Power Rule


If
$$f(x) = [g(x)]^n$$
 then $f'(x) = n[g(x)]^{n-1}g'(x)$, where $n \in \mathbb{Z}$, n is an integer

The quotient Rule

If
$$F(x) = \frac{f(x)}{g(x)}$$
 then $F'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$

Before we look at the chain rule for differentiation let's' look at the composition of functions. The *composition of two or more functions* can be thought of as taking the function of a function or

The domain of one function is the range of the other function. Given two functions f and g the composite function $f \circ g$ is defined by,

$$(f \circ g)(x) = f(g(x))$$

The chain rule considers the derivative of the composition of two functions.

The Chain Rule

If f and g are differentiable functions and $F(x) = f \circ g(x)$ then

$$F'(x) = f'(g(x))g'(x)$$

Using Leibniz Notation, If y = f(u), u = g(x) then,

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}.$$

Note: The power function rule is a special case of the chain rule where $f(x) = x^n$ and given some function g(x), the derivative of $F(x) = f \circ g(x) = [g(x)]^n$ is

$$f'(x) = n[g(x)]^{n-1}g'(x).$$

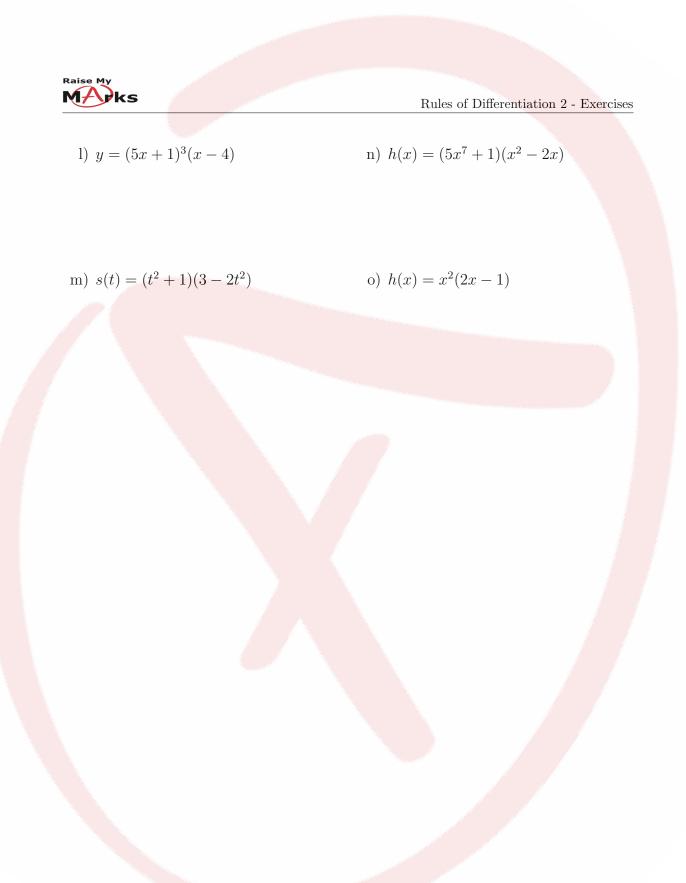
Exercises

Use the rules of differentiation to differentiate the following functions.

a) $f(x) = (x^2 + 3x + 5)^6$ g) $y = (2x + 1)^5 (3x + 2)^4$

b) $f(x) = 2x(x+1)^3(x^2+2x+1)^2$

h)
$$y = (4x^2 + 2x)(3 - 2x - 5x^2)$$


c)
$$y = x^2(3x^2 + 4)^2(3 - x^3)^4$$

i) $y = (1 - 2x)(1 + 2x)$

d)
$$y = 2(x - 29)(x + 1)$$

i) $y = (1 - x^2)^4(2x + 6)^3$

e) $y = (x^3 - 5x + 2)(3x^2 - 2x)$

k) $y = (5x+1)^3(2x+6)^3$

f) y = 3x(x-4)(x+3)

