Remainder Theorem

Raise My
 MAKS

RaiseMyMarks.com

Remainder Theorem

The remainder theorm gives a relationship between the dividend $f(x)$ and the remainder, $r(x)$.

Example

$f(x)=x^{3}-x^{2}-4 x-2$ divided by $d(x)=x+2$. First let's consider, $d(x)=x+2=0$ and solve for x,

Solutions:

$$
d(x)=x+2=0 \Longrightarrow x=-2
$$

Now, let's consider $f(-2)$.

$$
\begin{aligned}
f(-2) & =(-2)^{3}-(-2)^{2}-4(-2)-2 \\
& =-8-4+8-2 \\
& =-6
\end{aligned}
$$

Now let's divide $f(x) \div d(x)$ and see what we get.

$$
x+2) \begin{array}{r}
x^{2}-3 x+2 \\
\begin{array}{r}
x^{3}-x^{2}-4 x-2 \\
-\left(x^{3}+2 x^{2}\right)
\end{array} \\
\begin{array}{r}
-\frac{-\left(-3 x^{2}-4 x\right)}{-6 x}-2 x \\
-\frac{2 x+4)}{-6}
\end{array}
\end{array}
$$

We have $q(x)=x^{2}-3 x+2$ and $r(x)=-6=f(-2)$.

Example

Let $f(x)=x^{3}-4 x^{2}+5 x-1$ be divided by $d(x)=x-2$.

Solutions:

$$
x-2) \begin{array}{r}
x^{2}-2 x+1 \\
\begin{array}{r}
x^{3}-4 x^{2}+5 x-1 \\
-\left(x^{3}-2 x^{2}\right)
\end{array} \\
\begin{array}{r}
-2 x^{2}+5 x \\
\frac{-\left(-2 x^{2}+4 x\right)}{-x-1} \\
-\frac{(-x-2)}{1}
\end{array}
\end{array}
$$

and $d(x)=x-2=0$ gives, $x=2$,

$$
f(2)=2^{3}-4(2)^{2}+5(2)-1=8-16+10-1=1=r(x) .
$$

Remainder Theorem

What does the Remainder Theorem say?
If $f(x)$ is divided by $x-p$, giving a quotient $q(x)$ and a remainder r then $r=f(p)$.

Example

Find the remainder when $f(x)=x^{3}-4 x^{2}+5 x-1$ is divided by $2 x-3$. Let's rewrite $2 x-3$ in the form $x-p$,

$$
2 x-3=2\left(x-\frac{3}{2}\right) .
$$

Solutions: Then by the remainder theorem,

$$
\begin{aligned}
f(x) & =f\left(\frac{3}{2}\right)=\left(\frac{3}{2}\right)^{3}-4\left(\frac{3}{2}\right)^{2}+5\left(\frac{3}{2}\right)-1 \\
& =\frac{27}{8}-\frac{36}{4}+\frac{15}{2}-1 \\
& =\frac{27}{8}-\frac{72}{8}+\frac{60}{8}-\frac{8}{8} \\
& =\frac{7}{8} \\
& =r
\end{aligned}
$$

Example

What is the remainder when, $x^{3}-4 x^{2}+2 x-6$ is divided by $x+1$?

Solutions: So,

$$
\begin{aligned}
& d(x)=x+1=0 \Longrightarrow x=-1 \text { so, } p=-1 \\
r= & f(p)=f(-1)=(-1)^{3}-4(-1)^{2}+2(-1)-6 \\
= & -1-4-2-6 \\
= & -13
\end{aligned}
$$

Therefore, the remainder is -13 .

Exercises

1. Use the Remainder Theorm to find the remainder of the following:
a) $\left(x^{3}-4 x^{2}+2 x+6\right) \div(2 x+3)$
b) $\left(3 x^{5}-5 x^{2}+4 x+1\right) \div(2 x-1)$
c) $\left(4 x^{3}+9 x-10\right) \div(x-1)$
d) $\left(6 x^{2}-10 x+7\right) \div(3 x+1)$
e) $\left(x^{4}-x^{3}+x^{2}-3 x+4\right) \div(x-5)$
2. Perform the following,
a) $\left(x^{4}-4 x^{3}+3 x^{2}-3\right) \div\left(x^{2}+x-2\right)$
b) $\left(x^{3}+2 x^{2}-x-2\right) \div(x-1)$
c) $\left(3 x^{3}+x+2\right) \div(3 x-1)$
d) $\left(6 x^{3}+31 x^{2}+25 x-12\right) \div(2 x+3)$
e) $\left(4 x^{4}+8 x^{3}-x^{2}+x+3\right) \div(x-5)$
