Properties of Logarithms 2



RaiseMyMarks.com

2020

(1)

Properties of logarithm

Let's consider some properties of the logarithmic function,

$$y = f(x) = \log_b x$$

1. b > 0

- 2. x-intercept = 1
- 3. y-axis is a vertical asymptote
- 4. Domain= $\{x \in \mathbb{R} | x > 0\}$
- 5. Range = $\{y | y \in \mathbb{R}\}$
- 6. If b > 1 then the logarithmic function is increasing.
- 7. If 0 < b < 1 then the logarithm function is decreasing.

Notes, the most common base used is 10 for the logarithm function. This logarithm is writtedn as $\log x$ rather than $\log_{10} x$. The value of the base *b* can be omitted when b = 10.

Some basic properties of logarithms

1.
$$\log_b 1 = 0$$

- 2. $\log_b b = 1$
- 3. $\log_b b^x = x$
- 4. $b^{\log_b x} = x$

More properties of logarithms when x > 0, w > 0 and $r \in \mathbb{R}$ is a real number.

5.

$$\log_a(xw) = \log_a x + \log_a w$$

6.

$$\log_a\left(\frac{x}{w}\right) = \log_a x - \log_a w$$

7.

$$\log_a x^r = r \log_a x$$

Let's use some of these properties to solve logarithmic equation.

Properties of Logarithms 2 - Exercises

Example

Solve $\log_6 x = 2$.

Solution: $\log_6 x = 2$ means $x = 6^2 = 36$.

Example

Solve $\log_6 x + \log_6(x+1) = 1$

Solution:

$\log_6 x + \log(x+1)$	=	1, multiplicative property
$\log_6[(x(x+1))]$	=	1 equivalence to exponential
6^{1}	=	x(x+1)
0	=	$x^2 + x - 6$
0	=	(x+3)(x-2)

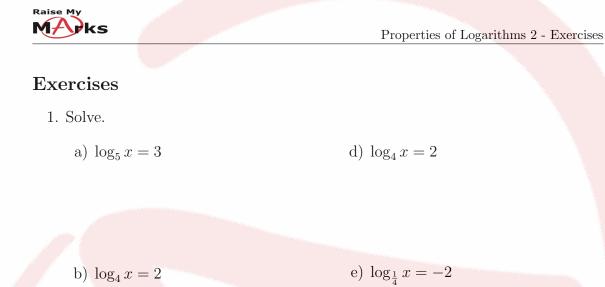
Therefore, x = -3 or 2.

Example

Solve $3^x = 23$.

Solution:

3^x	=	23, Tal	<mark>ke log b</mark> ase 10 on both sides
$\log 3^x$	_	$\log 23,$	power property
$x \log 3$	=	$\log 23$,	solve for x
x	=	$\frac{\log 23}{\log 3}$	



c) $\log_4\left(\frac{1}{64}\right) = x$

f) $\log_x 27 = 3$

2. Sketch on one graph each of the following:

a) $y = 5^x$ and $y = \log_5 x$ b) $y = 5^{-x}$ and $y = \log_{\frac{1}{5}} x$