Maximum and Minimum Values

Raise My Ks

RaiseMyMarks.com

2020

Maximum and Minimum Values

We know that the derivative of a function f at a particular point x = a is the slope of the tangent othe function at the point P(a, f(a)). When we are at a maximum or minimum value of a function, what is the value of the derivative? Let's take a look.

Therefore,

$$f''(x_0) < 0 \implies f(x_0) = maximum$$

 $f''(x_1) > 0 \implies f(x_1) = minimum$

Notice that at the points where the function is a maximum $x = x_0$ and a minimum $x = x_1$, the derivative of the function at these points is 0, $f'(x_0) = 0$ and $f'(x_1) = 0$, because the tangents are horizontal and so have slope equal to zero. How do we determine where a function has a maximum or minimum?

We solve
$$f'(x) = 0$$
 for x .

Therefore we have,

$$f'(x_0) = 0$$
, $f''(x_0) < 0$ \Longrightarrow $f(x_0) = maximum$
 $f'(x_1) = 0$, $f''(x_1) > 0$ \Longrightarrow $f(x_1) = minimum$

Procedure for finding the maximum and minimums of a function

- 1. Solve f'(x) = 0 for x. Let $x = x_0$ be such that $f'(x_0) = 0$.
- 2. Calculuate $f''(x_0)$.
- 3. If $f''(x_0) < 0$ then $f(x_0)$ is a maximum. If $f''(x_0) > 0$ then $f(x_0)$ is a minimum.
- 4. Solve f''(x) = 0. Let $x = x_c$ be such that $f''(x_c) = 0$.
- 5. $x = x_c$ is called the *point of inflection* and is the point where the "concavity" of the function changes.

Exercises

1. Find the maximum value of each function on the given interval.

a)
$$f(x) = x^2 - 4x + 3$$
, $0 \le x \le 3$ e) $f(x) = x + \frac{4}{x}$, $1 \le x \le 10$

e)
$$f(x) = x + \frac{4}{x}$$
, $1 \le x \le 10$

b)
$$f(x) = x^3 - 3x^2, -1 \le x \le 3$$

f)
$$f(x) = 4\sqrt{x} - x$$
, $2 \le x \le 9$

c)
$$f(x) = x^3 - 3x^2$$
, $-2 \le x \le 1$

c)
$$f(x) = x^3 - 3x^2$$
, $-2 \le x \le 1$ g) $f(x) = 3x^4 - 4x^3 - 36x^2 + 20$, $-3 \le x \le 4$

d)
$$f(x) = \frac{1}{3}x^3 - \frac{5}{2}x^2 + 6x$$
, $0 \le x \le 4$ h) $f(x) = \frac{4x}{x^2 + 1}$, $-2 \le x \le 4$

h)
$$f(x) = \frac{4x}{x^2+1}$$
, $-2 \le x \le 4$

2. Find the minimum for each function in # 1 on the given interval.