Maximum and Minimum Values

Raise My
 MAks

RaiseMyMarks.com

Maximum and Minimum Values

We know that the derivative of a function f at a particular point $x=a$ is the slope of the tangent othe function at the point $P(a, f(a))$. When we are at a maximum or minimum value of a function, what is the value of the derivative? Let's take a look.

Therefore,

$$
\begin{aligned}
f^{\prime \prime}\left(x_{0}\right)<0 & \Longrightarrow f\left(x_{0}\right)=\text { maximum } \\
f^{\prime \prime}\left(x_{1}\right)>0 & \Longrightarrow f\left(x_{1}\right)=\text { minimum }
\end{aligned}
$$

Notice that at the points where the function is a maximum $x=x_{0}$ and a minimum $x=x_{1}$, the derivative of the function at these points is $0, f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime}\left(x_{1}\right)=0$, because the tangents are horizontal and so have slope equal to zero. How do we determine where a function has a maximum or minimum?

We solve $f^{\prime}(x)=0$ for x.

Therefore we have,

$$
\begin{aligned}
& f^{\prime}\left(x_{0}\right)=0, f^{\prime \prime}\left(x_{0}\right)<0 \quad \Longrightarrow \quad f\left(x_{0}\right)=\text { maximum } \\
& f^{\prime}\left(x_{1}\right)=0, f^{\prime \prime}\left(x_{1}\right)>0 \quad \Longrightarrow f\left(x_{1}\right)=\text { minimum }
\end{aligned}
$$

Procedure for finding the maximum and minimums of a function

1. Solve $f^{\prime}(x)=0$ for x. Let $x=x_{0}$ be such that $f^{\prime}\left(x_{0}\right)=0$.
2. Calculuate $f^{\prime \prime}\left(x_{0}\right)$.
3. If $f^{\prime \prime}\left(x_{0}\right)<0$ then $f\left(x_{0}\right)$ is a maximum. If $f^{\prime \prime}\left(x_{0}\right)>0$ then $f\left(x_{0}\right)$ is a minimum.
4. Solve $f^{\prime \prime}(x)=0$. Let $x=x_{c}$ be such that $f^{\prime \prime}\left(x_{c}\right)=0$.
5. $x=x_{c}$ is called the point of inflection and is the point where the "concavity" of the function changes.

Exercises

1. Find the maximum value of each function on the given interval.
a) $f(x)=x^{2}-4 x+3,0 \leq x \leq 3$
e) $f(x)=x+\frac{4}{x}, 1 \leq x \leq 10$
b) $f(x)=x^{3}-3 x^{2}, \quad-1 \leq x \leq 3$
f) $f(x)=4 \sqrt{x}-x, 2 \leq x \leq 9$
c) $f(x)=x^{3}-3 x^{2}, \quad-2 \leq x \leq 1$
g) $f(x)=3 x^{4}-4 x^{3}-36 x^{2}+20,-3 \leq$ $x \leq 4$
d) $f(x)=\frac{1}{3} x^{3}-\frac{5}{2} x^{2}+6 x, 0 \leq x \leq 4$
h) $f(x)=\frac{4 x}{x^{2}+1}, \quad-2 \leq x \leq 4$
2. Find the minimum for each function in $\# 1$ on the given interval.
