Logarithmic Function 1

RaiseMyMarks.com

Logarithmic Function

The inverse of the exponential function is called the logarithm function. Let's start by seeing what the logarithm function looks like. We know what the exponential function $f(x)=b^{x}, b>1$ look like.

Remmber how the graph of the inverse of a function is obtained? The graph of the inverse of a function is obtained by reflecting the graph of the function $f(x)$ in the line $y=x$. Let's do this now for the exponential function $f(x)=b^{x}$.

Now, how do we find the algebraic expression for the inverse of a function? We interchange the x and y values in the original function $f(x)$ and then solve for y. Let's do the first part,

$$
x=b^{y}, \quad b>1
$$

We can do the same for when $0<b<1$.

The logaithm function is the inverse of the exponential function. How is the inverse function written? $x=b^{y}$ represents the inverse of $y=b^{x}$. Solving $x=b^{y}$ for y gives the following function and notation:

$$
x=b^{y} \Longleftrightarrow y=\log _{b} x
$$

where $y=\log _{b} x$ is read as " y equals \log of x, base b ", where the function y is defined for $x>0$. To summarize,

Exponential	Logarithm
$x=b^{y}$	$y=\log _{b} x$

for $b>0$ and $b \neq 1$. What does the logaithm function mean? $y=\log _{b} x$ means, the base b must be raised to the power y to give the value x.

Exercises

1. Change to exponential or logarithmic form.
a) $\log _{5}\left(\frac{1}{25}\right)=-2$
c) $\log _{7} 1=0$
b) $\log _{1 / 3} 9=-2$
d) $\log _{y}\left(\frac{1}{7}\right)=-1$
2. Change to logarithmic form.
a) $3^{2}=9$
b) $8^{0}=1$
c) $\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
d) $36^{1 / 2}=6$
e) $125=5^{3}$
f) $49=7^{2}$
