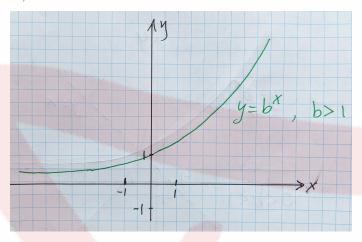
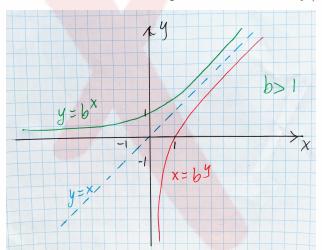
Logarithmic Function

Raise My KS


RaiseMyMarks.com

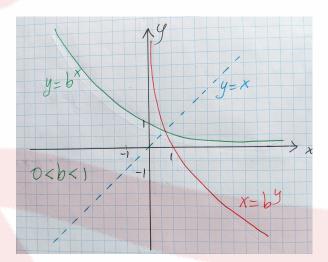
2020



Logarithmic Function

The inverse of the exponential function is called the *logarithm function*. Let's start by seeing what the logarithm function looks like. We know what the exponential function $f(x) = b^x, b > 1$ look like.

Remmber how the graph of the inverse of a function is obtained? The graph of the inverse of a function is obtained by reflecting the graph of the function f(x) in the line y = x. Let's do this now for the exponential function $f(x) = b^x$.



Now, how do we find the algebraic expression for the inverse of a function? We interchange the x and y values in the original function f(x) and then solve for y. Let's do the first part,

$$x = b^y, b > 1$$

We can do the same for when 0 < b < 1.

The logaithm function is the inverse of the exponential function. How is the inverse function written? $x = b^y$ represents the inverse of $y = b^x$. Solving $x = b^y$ for y gives the following function and notation:

$$x = b^y \iff y = \log_b x$$

where $y = \log_b x$ is read as "y equals log of x, base b", where the function y is defined for x > 0. To summarize,

Exponential	Logarithm
$x = b^y$	$y = \log_b x$

for b > 0 and $b \neq 1$. What does the logaithm function mean? $y = \log_b x$ means, the base b must be raised to the power y to give the value x.

Exercises

Change to exponential or logarithmic form.

a)
$$\log_3 81 = 4$$

f)
$$9^0 = 1$$

b)
$$\log_{25} 5 = \frac{1}{2}$$

g)
$$2^{-3} = \frac{1}{8}$$

c)
$$5^3 = 125$$

h)
$$27^{2/3} = 9$$

d)
$$\left(\frac{1}{2}\right)^{-3} = 8$$

i)
$$\log_5 125 = 3$$

e)
$$3^2 = 9$$

$$j) \log_7 1 = 0$$