Limits

Raise My
 MARs

RaiseMyMarks.com

Definition of the Derivative

The difference quotient

$$
\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}=\frac{f(a+h)-f(a)}{h}
$$

is called the average rate of change of y with respect to x over the interval from $x=a$ to $x=a+h$. The rate of change of $y=f(x)$ with respect to x when $x=a$ is given by,

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

provided the limit exists.
We've been using this,

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}
$$

notation, or limits.

Limit Definition

Let's define a limit. A number L is the limit of a function $y=f(x)$ as x approaches a value, say a, if,

$$
\lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x)
$$

and is written as

$$
\lim _{x \rightarrow a} f(x)=L
$$

If the above does not hold then the limit does not exists and the limit,

$$
\lim _{x \rightarrow a} f(x)
$$

does not exists.
What does

$$
\lim _{x \rightarrow a^{-}} f(x)
$$

mean? This notation $x \rightarrow a^{-}$means, as x approaches a from the negative or left hand side of a. And equivalently, $x \rightarrow a^{+}$means as x approaches a from the positive or right had side of a. Consdering a number line we have,

Properties of Limits

For any real number a suppose functions f and g have limits at $x=a$. Then
1.

$$
\lim _{x \rightarrow a} K=K, \text { for any constant } K
$$

2.

$$
\lim _{x \rightarrow a} x=a
$$

3.

$$
\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)
$$

4.

$$
\lim _{x \rightarrow a}[c f(x)]=c\left[\lim _{x \rightarrow a} f(x)\right], \text { for any constant } c
$$

5.

$$
\lim _{x \rightarrow a}[f(x) g(x)]=\left[\lim _{x \rightarrow a} f(x)\right]\left[\lim _{x \rightarrow a} g(x)\right]
$$

6.

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}, \text { provided } \lim _{x \rightarrow a} g(x) \neq 0
$$

7.

$$
\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}, \text { for } n \text { a rational number. }
$$

Exercises

1. Simplify each of the following.
a)

$$
\frac{(2+h)^{2}-4}{h}
$$

d)

$$
\frac{3(1+h)^{2}-3}{h}
$$

b)

$$
\frac{\frac{1}{1+h}-1}{h}
$$

e)

$$
\frac{\frac{-1}{2+h}+\frac{1}{2}}{h}
$$

c)

$$
\frac{\frac{3}{4+h}-\frac{3}{4}}{h}
$$

f)

$$
\frac{(5+h)^{3}-125}{h}
$$

2. Calculate the limits.
a) $\lim _{x \rightarrow-4} x$
b) $\lim _{x \rightarrow 3}(x-4)$
c) $\lim _{x \rightarrow-1} x^{3}$
e) $\lim _{x \rightarrow-1}\left(4-2 x^{2}\right)$
f) $\lim _{x \rightarrow-3} \frac{|x+3|}{x+3}$
g) $\lim _{x \rightarrow-1}\left(9-x^{2}\right)$
d) $\lim _{x \rightarrow 15} 7$
h) $\lim _{x \rightarrow 0} \sqrt{\frac{x+20}{2 x+5}}$
i) $\lim _{x \rightarrow 3^{+}} \frac{1}{x+2}$
k) $\lim _{x \rightarrow 0} \sqrt{3+\sqrt{1+x}}$
j) $\lim _{x \rightarrow 9}\left(x+\frac{1}{\sqrt{x}}\right)^{2}$
