Increasing and Decreasing Functions 2

Raise My

RaiseMyMarks.com

Increasing and Decreasing Functions

We say a function f is decreasing on an interval if for $x_{1}<x_{2}, f\left(x_{1}\right)>f\left(x_{2}\right)$.
We say a function f is increasing on an interval if for any $x_{1}<x_{2}, f\left(x_{1}\right)<f\left(x_{2}\right)$

If we consider the graph above, when $x<0$ the function is decreasing. Notice that the tangents to the curvce when it is decreasing are all negative or $f^{\prime}(x)<0$ for $x<0$. When $x>0$, the function is increasing. Notice that the tangents to the curve when $x>0$ are all positive, $f^{\prime}(x)>0$, for $x>0$. We can summaraize this as follows:

For a continuous and differentiable function f, f is increasing when $f^{\prime}(x)>0$ and f is decreasing when $f^{\prime}(x)<0$.

Maximum or Minimum

If we look at the graph below, we see that one graph has a maximum value and the other has a minimum value.

Notice in left figure we have a minimum value when $x=c$ or when $f^{\prime}(c)=0$ The point where this minimum occurs is $\left(c, f^{\prime}(c)\right)$. In the right hand figure we have a similar situation except now we have a maximum value when $x=c$ or at point $(c, f(c))$. Again $f^{\prime}(c)=0$. This point $(c, f(c))$ is called a critical point of the function f.

Critical points

How do we find a critical point for a function f ? For a function $f(x)$

1. Find $f^{\prime}(x)$.
2. Find the roots of $f^{\prime}(x)=0$. So, find the x values for which $f^{\prime}(x)=0$.
3. The x-values found in 2. can be labeled c. Evalutate $f(c)$ for each c value in 2 .
4. $(c, f(c))$, for each c in 2 . is a critical point for f.

Relative maximum or minimum?

How do we know if $f(c)$ is a relative maximum or relative minimum of the function?

1. For a function f where $(c, f(c))$ is a critical point, if $f(c)<f(x)$ for x near c then $f(c)$ is a local minimum values. If $f(c)>f(x)$ for x near c then $f(c)$ is a local maximum value.
2. Another way to determine if a critical point c give a maximum or minimum value is to consider the second derivative. If $f^{\prime \prime}(c)>0$ then c gives a minimum value, that is $f(c)$ is a minimum; if $f^{\prime \prime}(c)<0$ then c gives a maximum value, that is $f(c)$ is a maximum.

Exercises

1. Find the critical points for the following functions.
a) $y=x^{2}-12 x^{1 / 3}$
b) $f(x)=-2 x^{2}+8 x+13$
c) $f(x)=-3 x^{3}-5 x$
d) $f(x)=\sqrt{x^{2}-2 x+2}$
e) $f(x)=x^{2} \ln x$
f) $f(x)=e^{-x^{2}}$
2. For each function in $\# 1$ determine if the critical point is a local maximum or minimum or neither.
