Higher Order Derivatives

RaiseMyMarks.com

2020

Higher Order Derivatives

So far we have considered taking a derivative of a function, implicitly or explicitly, once only. This is the first derivative we have been considering. When we take the derivative of the first derivative, we have a second derivative; the derivative of the second derivative is the third derivative; and so on. Notation-wise we have the following:

Function	f(x) = y
1st derivative	$f'(x) = \frac{dy}{dx}$
2nd derivative	$f''(x) = \frac{d^2y}{dx^2}$
3rd derivative	$f'''(x) = \frac{d^3y}{dx^3}$

Let's consider an example.

Example

Find the second derivative of $f(x) = \frac{x}{1+x}$.

Solution: We need to use the quotient rule.

$$f'(x) = \frac{1+x-x}{(1+x)^2} = \frac{1}{(1+x)^2}$$
$$f''(x) = (1+x)^{-2}$$

Now we can use the power rule.

$$f''(x) = -2(1+x)^{-3}$$

Let's fid the third derivative of the function above.

$$f'''(x) = (-2)(-3)(1+x)^{-4} = 6(1+x)^{-4}$$

Exercises

Find the following derivatives:

a)
$$x^2 + y^2 = 36$$
 First derivative. f) $x^3y^3 = 144$ Second derivative

f)
$$x^3y^3 = 144$$
 Second derivative

b)
$$15y^2 = 2x^3$$
 Second derivative.

g)
$$x = y + y^5$$
 Third derivative

c)
$$3xy^2 + y^3 = 8$$
 Second derivative.

h)
$$xy^3 - x^3y = 2$$
 First derivative

d)
$$9x^2 - 16y^2 = -144$$
 First derivative

i)
$$\sqrt{x} + \sqrt{y} = 5$$
 Third derivative.

e)
$$3x^2 + 4xy^3 = 9$$
 Third derivative.