Factors 2

Raise My
 MARs

RaiseMyMarks.com

What is a factor of a function?

Specifically, a polynomial function? A linear factor $x-a$ of a function $f(x)$ is such that $f(a)=0$. For example, show that $x-2$ is a factor of $x^{3}-3 x^{2}+5 x-6$. Let $a=2$. Then we have,

$$
\begin{aligned}
f(x) & =x^{3}-3 x^{2}+5 x-6 \\
f(2) & =8-12+10-6 \\
& =-4+4 \\
& =0
\end{aligned}
$$

or $x-2$ is a factor of $f(x)$ when the remainder of $f(x) \div(x-2)$ is 0 . Let's check this is true.

$$
x-2) \begin{array}{r}
x^{2}-x+3 \\
\begin{array}{r}
x^{3}-3 x^{2}+5 x-6 \\
-\left(x^{3}-2 x^{2}\right)
\end{array} \\
\begin{array}{r}
-\frac{\left(-x^{2}+2 x\right)}{3 x-6} \\
-\frac{(3 x-6)}{0}
\end{array}
\end{array}
$$

So the remainder $r=0$. Therefore, $x-2$ is a facor of $x^{3}-3 x^{2}$. This is summarized nicely in the Factor Theorem,

Factor Theorem

$$
x-p \text { is a factor of } f(x) \text { if and only if } f(p)=0
$$

Some special polynomials and factors:
The sum and difference of cubes:

$$
\begin{aligned}
& x^{3}-a^{3}=(x-a)\left(x^{2}+x a+a^{2}\right) \\
& x^{3}+a^{3}=(x+a)\left(x^{2}-x a+a^{2}\right)
\end{aligned}
$$

Difference of squares

$$
x^{2}-a^{2}=(x-a)(x+a)
$$

Quadratic factors

$$
a x^{2}+b x+c=\left(x-\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}\right)\left(x-\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}\right)
$$

where the quadratic formula has been used to find the roots and hence the factors of the quadratic. In general a polynomial of degree n has at most n real roots. It
is possible for a polynomial of degree n to have less than n real roots but every polynomial of degree n n has exactly n roots, real or complex.

Some properties of Quadratics

There are some interesting properties of quadratics. Let's consider the quadratic

$$
q(x)=a x^{2}+b x+c,
$$

where a, b, c are real numbers.

1. The sum of the roots of $q(x)=0=a x^{2}+b x+c$ is $-\frac{b}{a}$.
2. The products of the roots of $q(x)=0=a x^{2}+b x+c$ is $\frac{c}{a}$.
3. Any quadratic equation can be written as,

$$
\begin{aligned}
& 0=x^{2}-(\text { sum of roots }) x+(\text { product of roots }) \\
& 0=a x^{2}+b x+c \\
& 0=a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right) \\
& 0=a\left(x^{2}-\left(-\frac{b}{a}\right) x+\frac{c}{a}\right)
\end{aligned}
$$

Note: Factors of functions are not necessarily just linear. The following function has quadratic factors,

$$
f(x)=\left(x^{2}+1\right)^{2}
$$

You may think of a factor of a function $f(x)$ as any functions $g_{1}(x), \ldots, g_{n}(x)$ such that $f(x)=g_{1}(x) \cdots g_{n}(x)$, where at least two of the functiosn $g_{i}(x)$ and $g_{j}(x)$ for $i \neq j$ are NOT equal to 1 . Mos the functions we will consider will have factors that are linear or polynomial.

Exercises

1. Factor the following fucntions completely.
a) $x^{4}-6 x^{3}-15 x^{2}-6 x-16$
b) $x^{3}+2 x^{2}-x-2$
c) $y^{3}+19 y^{2}-19 y-1$
d) $x^{3}-4 x+3$
e) $x^{4}-8 x^{3}+3 x^{2}+40 x-12$
2. If $(x+2)$ is a factor of $x^{3}-\frac{6}{k} x^{2}-5 x+6$, what is k ?
3. Show $x-y$ is a factor of $x^{n}-y^{n}$.
