Factor Theorem 2

Raise My KS

RaiseMyMarks.com

2020

Factor Theorem

$$x - p$$
 is a factor of $f(x)$ if and only if $f(p) = 0$.

Factor Theorem Extended

A function,

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

has a factor,

$$qx - p$$

if

$$f\left(\frac{p}{q}\right) = 0$$

where,

q divides a_n and p divides a_0 .

Exercises

1. State all possible values $\frac{p}{q}$ that could make the given polynomial 0.

a)
$$3x^3 - 4x^2 + 7x + 8$$

b)
$$2x^3 - 8x^2 + 5x - 6$$

c)
$$4x^3 + 3x^2 - 11x + 2$$

d)
$$6x^3 - 7x^2 + 4x + 3$$

e)
$$8x^3 - 7x^2 + 23x - 4$$

2. Find the equation whose roots are each 6 more than the roots of $x^2 + 8x - 1 = 0$.