Derivative Notation

Raise My
 MAks

RaiseMyMarks.com

Terms

The normal to the graph of f at the point P is the line that is perpendicular to the tangent at P.

A function is said to be differentiable at a if the derivative $f^{\prime}(a)$ exists.
A point where f is not differentiable, the derivative is said to not exist. Three common ways for a derivative not to exist are:

Cusp

Vertical Tangent

Discontinuity

Derivative Notation

There are different notations for the derivative of a function. Two of the more common notations for derivative are,

$$
f^{\prime}(x) \text { and } \frac{d y}{d x}
$$

It is possible for a function to be continuous at a point but not differentiable. The absolute function $f(x)=|x|$ is such a function.

Example

Let's consider the derivative of a polynomial function. If we consider the simplest polynomial, $f(x)=x+c$, a line. Let's calculate the derivative of f.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x+h+c-(x+c)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{h}=1
\end{aligned}
$$

Exercises

1. Use the definition of the derivative to determine the derivative.
a) $f(x)=x^{2}+3 x$
e) $y=c$
b) $f(x)=\frac{3}{x+2}$
f) $y=x$
c) $f(x)=\sqrt{3 x+2}$
g) $y=m x+b$, where m and b are constants
d) $f(x)=\frac{1}{x^{2}}$
h) $y=a x^{2}+b x+c$, where a, b and c are constants.
2. Use the definition of the derivate to find the value of the derivative $f^{\prime}(x)$ at the point $x=a$.
a) $f(x)=x^{2}, a=2$
b) $f(x)=x^{2}+3, a=-1$
d) $f(x)=x+4, a=-2$
e) $f(x)=\frac{2}{x-3}, a=4$
c) $f(x)=\sqrt{x+1}, a=3$
