Concavity and point of inflection

Raise My

RaiseMyMarks.com

Concavity and points of inflection

At a critical point the function is a relative maximum or a relative minimum. The graph is said to be concave down at a relative maximum and concave up at a relative minimum.

A point of inflection is a critical point $(c, f(c))$ where $f^{\prime \prime}(c)=0$. It is a point where th concavity of the function changes.

Let's consider a few examples.

Example

Determine points of inflection for

$$
f(x)=\frac{1}{x^{2}+3}
$$

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =-\left(x^{2}+3\right)^{-2}(2 x) \\
& =\frac{-2 x}{\left(x^{2}+3\right)^{2}} \\
f^{\prime \prime}(x) & =\frac{-2\left(x^{2}+3\right)^{+}(-2 x)(2)\left(x^{2}+3\right)(2 x)}{\left(x^{2}+3\right)^{4}} \\
& =\frac{-2\left(x^{2}+3\right)+8 x^{2}}{\left(x^{2}+3\right)^{3}} \\
& =\frac{6 x^{2}-6}{\left(x^{2}+3\right)^{3}}
\end{aligned}
$$

Therefore, $x=+1$ or -1 are poins of inflection; $f^{\prime}(x)=0, x=0$ is a critical point. We have,

$$
f^{\prime \prime}(0)=-\frac{6}{3^{3}}=-\frac{6}{27}=-\frac{2}{9}<0
$$

Therefore, at $x=0$ is a relative , aximum or f is a concadve down at $x=0$.

Example

Graph

$$
f(x)=\frac{x-4}{x^{2}-x-2}
$$

Soution:

$$
f(x)=\frac{x-4}{x^{2}-x-2}=\frac{x-4}{(x-2)(x+1)}
$$

Therefore, $x=2,-1$ are discontinuities.

		-1		2		4
$x-4$	-		-		-	
$x-2$	-		-		+	+
$x+1$	-		+		+	
$f(x)$	-		+		-	

$$
\begin{aligned}
\lim _{x \rightarrow-1^{-}} f(x) & =-\infty \\
\lim _{x \rightarrow-1^{+}} f(x) & =+\infty \\
\lim _{x \rightarrow 2^{-}} f(x) & =+\infty \\
\lim _{x \rightarrow 2^{+}} f(x) & =-\infty
\end{aligned}
$$

Therefore, $x=2, x=-1$ are vertical asymptotes.

$$
\lim _{x \rightarrow \infty} \frac{x-4}{x^{2}-x-2}=\lim _{x \rightarrow \infty} \frac{x(1-4 / x)}{x^{2}\left(1-1 / x-2 / x^{2}\right)}=0
$$

Therefore, $y=0$ is a horiztonal asymptote.

Exercises

1. Find the second derivative for the following at the given point.
a) $f(x)=2 x^{3}-10 x+3, x=2$
c) $s=e^{t} \ln t, t=1$
b) $g(x)=x^{2}-\frac{1}{x} x=-1$
2. For each function in \#1 determine the points of inflection.
3. For the functions in $\# 1$ determine whether the function lies above or below the function at the given point.
