Asymptotes 3

Raise My

RaiseMyMarks.com

Vertical Asymptotes

Vertical asymptotes at $x=c$ occurs when one of the following limits occur:

$$
\lim _{x \rightarrow c^{+}} f(x) \text { or } \lim _{x \rightarrow c^{-}} f(x)
$$

does not exist. That is,

$$
\begin{aligned}
& \lim _{x \rightarrow c^{+}} f(x)=+\infty \\
& \lim _{x \rightarrow c^{+}} f(x)=-\infty \\
& \lim _{x \rightarrow c^{-}} f(x)=+\infty \\
& \lim _{x \rightarrow c^{-}} f(x)=-\infty
\end{aligned}
$$

For a general rational function $f(x)=\frac{p(x)}{q(x)}, f$ has a vertical asymptote $x=c$ if $q(c)=0$ and $p(c) \neq 0$.

Let's consider and example.

Example

Determine any vertical asymptotes of the function

$$
f(x)=\frac{x}{x^{2}+x-2}
$$

and describe the behavirous.

Solution:

$$
f(x)=\frac{p(x)}{q(x)}
$$

where $p(x)=x$ and $q(x)=x^{2}+x-2$.

$$
q(x)=x^{2}+x-2=(x+2)(x-1) \Rightarrow x=-2,1
$$

		-2		0		1
x	-		-		+	
$x+2$	-		+		+	+
$x-1$	-		-		-	
$f(x)$	-		+		-	

$$
\begin{aligned}
\lim _{x \rightarrow-2^{-}} f(x) & =-\infty \\
\lim _{x \rightarrow-2^{+}} f(x) & =+\infty \\
\lim _{x \rightarrow 1^{-}} f(x) & =-\infty \\
\lim _{x \rightarrow x^{+}} f(x) & =+\infty
\end{aligned}
$$

Horizontal Asymptotes

When the limit of the function is a finite number as $x \rightarrow \infty$ or $x \rightarrow-\infty$. Or, if,

$$
\lim _{x \rightarrow+\infty} f(x)=L \text { or } \lim _{x \rightarrow-\infty} f(x)=L
$$

then, we say the line $y=L$ is a horizatonal asymptote of $f(x)$.

Example

Determine the equation of all asymptotes of the graph

$$
f(x)=\frac{2 x^{2}+3 x-1}{x+1}
$$

Solution: To find the vertical asymptotes, we need to consider when the function $f(x)$ is undefined. $p(x)=2 x^{2}+3 x-1$ and $q(x)=x+1=0$. Therefore, $x=-1$ is a vertical asymptote. Notes that $p(-1)=2-3-1=-2 \neq 0$. To find the horizontal asymptotes,

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{2 x^{2}+3 x-1}{x+1} \\
& =\lim _{x \rightarrow \infty} \frac{x^{2}\left(2+\frac{3}{x}-\frac{1}{x^{2}}\right)}{x\left(1+\frac{1}{x}\right)} \\
& =\lim _{x \rightarrow \infty} 2 x=\infty, \text { and } \\
\lim _{x \rightarrow-\infty} f(x) & =-\infty
\end{aligned}
$$

Therefore, no horizontal asymptotes. In order to find any oblique asymptotes, we need to divide $q(x)=(x+1)$ into $p(x)=2 x^{2}+3 x-1$.

$$
x+1 \begin{gathered}
\frac{2 x+1}{2 x^{2}+3 x-1} \\
\frac{-\left(2 x^{2}+2 x\right)}{x-1} \\
-\frac{(x+1)}{-2}
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
& f(x)=\frac{2 x^{2}+3 x-1}{x+1}=2 x+1-\frac{2}{x+1} \\
& \lim _{x \rightarrow \infty} \frac{2}{x+1}=0 \quad, \quad \lim _{x \rightarrow-\infty} \frac{2}{x+1}=0 \\
& \therefore \text { as } x \rightarrow \infty \quad, \quad f(x) \rightarrow 2 x+1 \text { or } \\
& \text { as } x \rightarrow-\infty \quad, \quad f(x) \rightarrow 2 x+1 \text {. }
\end{aligned}
$$

Therefore, $y=2 x+1$ is an oblique asymptote.

Exercises

1. Check for discontinuities.
a)

$$
f(x)=\frac{x}{x+4}
$$

d)
b)

$$
y=\frac{3 x^{2}-8 x-7}{x-4}
$$

c)

$$
g(t)=\frac{t^{2}-2 t-15}{t-5}
$$

e)

$$
y=\frac{(2+x)(3-2 x)}{\left(x^{2}-3 x\right)}
$$

2. For each of the functions in $\# 1$ conduct a limit test to determine the behaviour on either side of the asymptote.
3. For each of the functions in $\# 1$ determine the horizontal and vertical asymptotes, if any.
