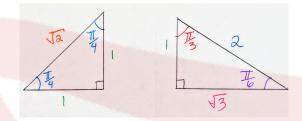

Special Triangles

RaiseMyMarks.com


2020

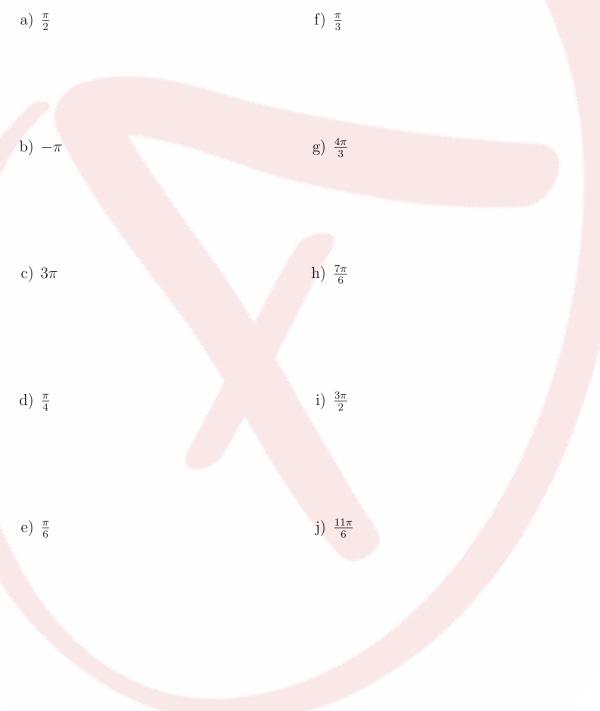
Special Triangles

The trigonometric ratios are based on a general right angled triangle with general angles. Now, if we consider specific angles, now we are dealing with specific right angles triangles, or **special triangles**. There are two **special triangles** based on three special angles. The three specific angles are $\pi/4$ and $\pi/6, \pi/3$. Let's have a look at these two special triangles.

The first special triangle is a right angled triangle with internal angles $45^{\circ} = \pi/4$ and sides 1, 1 and hypotenuse $\sqrt{2}$. We have the following trigonometric values for the angles $45^{\circ} = \pi/4$,

$$\sin 45^{\circ} = \frac{1}{\sqrt{2}}$$
$$\cos 45^{\circ} = \frac{1}{\sqrt{2}}$$
$$\tan 45^{\circ} = 1$$

The second special triangle has angles $60^{\circ} = \pi/3$ and $30^{\circ} = \pi 6$ with sides of length $\sqrt{3}$ and 1 and hypotenuse length 2. From this triangle we have the following trigonometric values:


$$\sin 60^{\circ} = \frac{\sqrt{3}}{2}, \quad \sin 30^{\circ} = \frac{1}{2}$$
$$\cos 60^{\circ} = \frac{1}{2}, \quad \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$
$$\tan 60^{\circ} = \sqrt{3}, \quad \tan 30^{\circ} = \frac{1}{\sqrt{3}}$$

Special Triangles - Exercises

Exercises

What is the sine, cosine and tangent of the following radian angles?

