Rational Functions & Oblique Asymptotes

RaiseMyMarks.com

2020

Rational Functions

Not all asymptotes are vertical or horizontal lines. It is possible for an asymptote to be a line with a negative or positive slope. These asymptotes have the equation of a line of the form y = mx + b where $m \neq 0$. An asymptote of this form is called an *oblique asymptote*. So, how do we find an oblique asymptote? First,

How do we know a rational functions has an oblique asymtote?

When we are faced with a rational function of the form,

$$f(x) = \frac{g(x)}{h(x)}$$

where p(x) and q(x) are polynomials, if the degree of g(x) is one more than the degree of h(x), then f(x) is a candidate for an oblique asymptote. So,

degree
$$(g(x)) = degree (h(x)) + 1$$

then f(x) may have an oblique asymptote.

How do we find an oblique asymptote?

To find an oblique asymptote we need to do long division of polynomials, h(x) into g(x). If we get a remainder function r(x) then the quotient function q(x) is our oblique asymptote. That is,

$$f(x) = \frac{g(x)}{h(x)} = q(x) + \frac{r(x)}{h(x)}$$

then y = q(x) is the oblique asymptote for the function f(x). Let's try an example.

Example

Find the oblique asymptote for the following rational functions,

$$\frac{x^2 - 2x - 5}{x - 1}$$

©Raise My Marks 2020

Rational Functions & Oblique Asymptotes - Exercises

Solution:

$$\begin{array}{r} x-1 \\ x-1 \end{array}) \underbrace{x^{2}-2x-5}_{-(x^{2}-x)} \\ -x-5 \\ -\underbrace{(-x+1)}_{-6} \end{array}$$

Therefore, y = x - 1 is the oblique asymptote.

©Raise My Marks 2020

Exercises

Find the oblique asymptote for the following rational functions,

a)
$$y = \frac{-2x^2 + 3x + 1}{x + 2}$$
 f) $f(x) = \frac{2x^2 - 1 + 3x^3}{3 - 2x^2}$

b) $y = \frac{x^2 + x - 6}{2 - x}$

g)
$$f(x) = \frac{2x^2 + x + 1}{8x}$$

c)
$$y = \frac{x^2 - 4x + 4}{x - 1}$$
 h) $f(x) = \frac{x^2 + 6x}{x + 2}$

d)
$$y = \frac{x^2 + 2x - 15}{3 - x}$$
 i) $f(x) = \frac{-3x^3 + x + 1}{x^2 + x + 2}$

e)
$$f(x) = \frac{2x^3 + x^2 + 11x + 5}{x^2 + 5}$$
 j) $f(x) = \frac{x^2 + 1}{x}$

©Raise My Marks 2020