Rational Functions \& Oblique Asymptotes

Raise My

RaiseMyMarks.com

Rational Functions

Not all asymptotes are vertical or horizontal lines. It is possible for an asymtote to be a line with a negative or positive slope. These asymptotes have the equation of a line of the form $y=m x+b$ where $m \neq 0$. An asymptote of this form is called an oblique asymptote. So, how do we find an oblique asymptote? First,

How do we know a rational functions has an oblique asymtote?
When we are faced with a rational function of the form,

$$
f(x)=\frac{g(x)}{h(x)}
$$

where $p(x)$ and $q(x)$ are polynomials, if the degree of $g(x)$ is one more than the degree of $h(x)$, then $f(x)$ is a candidate for an oblique asymptote. So,

$$
\text { degree }(g(x))=\text { degree }(h(x))+1
$$

then $f(x)$ may have an oblique asymptote.

How do we find an oblique asymptote?

To find an oblique asymptote we need to do long division of polynomials, $h(x)$ into $g(x)$. If we get a remainder function $r(x)$ then the quotient function $q(x)$ is our oblique asymptote. That is,

$$
f(x)=\frac{g(x)}{h(x)}=q(x)+\frac{r(x)}{h(x)}
$$

then $y=q(x)$ is the oblique asymptote for the function $f(x)$. Let's try an example.

Example

Find the oblique asymptote for the following rational functions,

$$
\frac{x^{2}-2 x-5}{x-1}
$$

Solution:

$$
\begin{aligned}
& \frac{x-1}{} \begin{array}{r}
x^{2}-2 x-5 \\
\frac{-\left(x^{2}-x\right)}{} \\
\frac{-x-5}{-6}
\end{array}
\end{aligned}
$$

Therefore, $y=x-1$ is the oblique asymptote.
(C)Raise My Marks 2020

Exercises

Find the oblique asymptote for the following rational functions,
a) $y=\frac{-2 x^{2}+3 x+1}{x+2}$
f) $f(x)=\frac{2 x^{2}-1+3 x^{3}}{3-2 x^{2}}$
b) $y=\frac{x^{2}+x-6}{2-x}$
g) $f(x)=\frac{2 x^{2}+x+1}{8 x}$
c) $y=\frac{x^{2}-4 x+4}{x-1}$
h) $f(x)=\frac{x^{2}+6 x}{x+2}$
d) $y=\frac{x^{2}+2 x-15}{3-x}$
i) $f(x)=\frac{-3 x^{3}+x+1}{x^{2}+x+2}$
e) $f(x)=\frac{2 x^{3}+x^{2}+11 x+5}{x^{2}+5}$
j) $f(x)=\frac{x^{2}+1}{x}$

