Rational Functions \& Asymptotes
Raise My MA ks

RaiseMyMarks.com

Rational Functions

Let's consider functions of the form

$$
f(x)=\frac{1}{x}
$$

, or rational functions. These functions usually have asymptotes, vertical and/or horizontal. An asymptote is a line the functions approahces but never crosses or meets. Let's consider an examples.

Example

Find the asymptote(s) of the following function,

$$
f(x)=\frac{1}{x}
$$

Solution: To find the horizontal asymptote we need to consider the limit of the function as x approaches $+\infty$ or $-\infty$.

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{1}{x} & =0 \text { and } \\
\lim _{x \rightarrow-\infty} \frac{1}{x} & =0
\end{aligned}
$$

Therefore, the vertical asymptote is given by the equation

$$
y=0
$$

A vertical asymptote occurs when a function is undefined at a particular value. So in this case our function is undefined when $x=0$.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \frac{1}{x} & =-\infty \text { and } \\
\lim _{x \rightarrow 0^{+}} \frac{1}{x} & =+\infty
\end{aligned}
$$

Now we can graph the function below,
Transformation of the parent function $f(x)=\frac{1}{x}$ will change the location of one or more of the asymptotes. For example,

Example

$$
f(x)=\frac{1}{x-2}+3
$$

We have ahorizontal translation right 2 units; vertical translation up 3 units. This means that the asymptote locations of the parent function need to be transformed the same. So our vertical asymptote is now $x=2$; the horizontal asymptote is now $y=3$. We can verify this as follows:

$$
\begin{aligned}
\lim _{x \rightarrow+\infty}\left(\frac{1}{x-2}+3\right) & =3 \text { and } \\
\lim _{x \rightarrow-\infty}\left(\frac{1}{x-2}+3\right) & =3
\end{aligned}
$$

which gives a horizontal asymptote of $y=3$; for the vertical asymptote,

$$
\begin{aligned}
\lim _{x \rightarrow 2^{+}}\left(\frac{1}{x-2}+3\right) & =+\infty \text { and } \\
\lim _{x \rightarrow 2^{-}}\left(\frac{1}{x-2}+3\right) & =-\infty
\end{aligned}
$$

implying our vertical asymptote is $x=2$. Let's graph the function but before we do, let's locate the y intercept and the zeros or x intercepts of the function. To find the y-intercept, let $x=0$ and solve for y.

$$
\begin{aligned}
f(x) & =\frac{1}{x-2}+3 \\
& =\frac{1}{-2}+3 \\
\therefore y & =2.5
\end{aligned}
$$

Therefore, our y-intercept is $(0,2.5)$. To find the x -intercept, let $y=0$ and solve for
x.

$$
\begin{aligned}
f(x) & =\frac{1}{x-2}+3 \\
0 & =\frac{1}{x-2}+3 \\
-3 & =\frac{1}{x-2} \\
-3(x-2) & =1 \\
-3 x+6 & =1 \\
-3 x & =-5 \\
\therefore x & =\frac{5}{3}
\end{aligned}
$$

Therefore, our x-intercept is $(5 / 3,0)$. With this information and the location of the asymptotes we can now graph the function $f(x)=\frac{1}{x-2}+3$.

Exercises

1. Find all the asymptotes, horizontal and vertical, for the following functions,
a) $f(x)=1+\frac{2}{x+5}$
d) $f(x)=-3+\frac{1}{x-2}$
b) $f(x)=-6-\frac{9}{x+2}$
e) $f(x)=\frac{4}{x-3}+5$
c) $f(x)=-\frac{3}{x+6}$
2. Find the domain of the following functions,
a) $f(x)=\frac{7}{x+7}+5$
b) $f(x)=\frac{4}{x-3}+3$
d) $f(x)=-\frac{1}{x+1}+5$
e) $f(x)=\frac{3}{x+3}-3$
c) $f(x)=\frac{2}{x-3}+8$
