L'Hôpital's Rule Indeterminate forms of Limits 3

Raise My MA Aks

RaiseMyMarks.com

Indeterminate forms of Limits

It is possible when evaluating a limit we run into some problems. For example, when we go through the steps of evaluating the limit and we end up in one of the following situations,

$$
\begin{equation*}
\frac{\infty}{\infty}, \frac{0}{0},(0)(\pm \infty), 1^{\infty}, 0^{0}, \infty^{0}, \infty-\infty \tag{1}
\end{equation*}
$$

Any of these forms in (1) is referred to as an indeterminate form of a limit. When faced with any of these indeterminate forms the following "rule" is performed to hopefully eliminate the indeterminate form. This rule is called l'Hôpital's Rule given below,

l'Hôpital's Rule

Suppose,

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0}{0} \text { or } \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{ \pm \infty}{ \pm \infty}
$$

where a is any real number ∞ or $+\infty$. Then,

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Example

Find the following limit

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x}{x} \\
= & \frac{0}{0}, \text { indeterminatne form so apply l'Hôpital's rule } \\
= & \lim _{x \rightarrow 0} \frac{\cos x}{1} \\
= & 1
\end{aligned}
$$

Example

Evaluate the following limit,

$$
\lim _{x \rightarrow 0^{+}} x \ln x
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} x \ln x \\
= & 0 \cdot \infty
\end{aligned}
$$

While $0 \cdot \infty$ is an indeterminate form it is not in one of the forms that is found in l'Hôpital's rule. So we need to try and rearrange the function so that we obtain either $\frac{0}{0}$ or $\frac{\infty}{\infty}$ as the indeterminate form.

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} x \ln x \\
= & \lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x} \text { now we will evaluate the limit of this form of the function ad see what we get. } \\
= & \lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}} \\
= & \frac{\infty}{\infty} \text { Now we can apply l'Hôpital's Rule } \\
= & \lim _{x \rightarrow 0^{+}} \frac{1}{x}\left(-\frac{x^{2}}{1}\right) \\
= & \lim _{x \rightarrow 0^{+}}(-x) \\
= & 0
\end{aligned}
$$

Note:

$$
f(x) g(x)=\frac{g(x)}{1 / f(x)}=\frac{f(x)}{1 / g(x)}
$$

Example

Evaluate the following limit,

$$
\lim _{x \rightarrow a} \frac{x-a}{x^{2}-a^{2}}
$$

Solution:

$$
\begin{aligned}
& =\lim _{x \rightarrow a} \frac{x-a}{x^{2}-a^{2}} \\
& =\lim _{x \rightarrow a} \frac{x-a}{(x-a)(x+a)} \\
& =\lim _{x \rightarrow a} \frac{1}{x+a} \\
& =\frac{1}{2 a}
\end{aligned}
$$

Exercises

Find the following limits,
1.

$$
\lim _{x \rightarrow \pi / 2} \frac{\cos x}{\pi / 2-x}
$$

2.

$$
\lim _{x \rightarrow 0} \text { frace }^{x}-x-1 x^{2}
$$

3.

$$
\lim _{x \rightarrow 0} \frac{\tan x}{\sqrt{x}}
$$

4.

$$
\lim _{x \rightarrow 0}(x+1)^{1 / x}
$$

7.

$\lim _{x \rightarrow 1^{+}}\left(\frac{1}{\ln x}-\frac{1}{1-x}\right)$
5.

$$
\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{2}}
$$

6.

$\lim _{x \rightarrow 0^{+}} x \ln \left(x^{4}\right)$
8.

$$
\lim _{x \rightarrow \infty}\left(\frac{x+7}{x+3}\right)^{x}
$$

9.

$$
\lim _{x \rightarrow 0} \frac{3^{x}-2^{x}}{x}
$$

