Functions Vertical Line Test

RaiseMyMarks.com

2020

What is a function?

Mappings

A function is a rule or mapping that assigns one and onle one value for each iput. Let's consider the diagram below.

In this diagram above, we see that each x value corresponds to a single distint y value. Let's consider the diagram below.

In this diagram, notice that x_3 and x_4 both map to y_3 . While the y value is not distinct, each x value maps to only one y value. So the y values that the x values are mapped to can be repeated. The diagram below shows the extreme case where all the x values map to a single y value.

All the three diagrams of *mappings* above represent *functions*. What does a mapping that is not a function look like? Let's take a look at the diagram below.

Input	Output
XI	y,
X2	y2
X3	- Y3
	· 4

Notice in the mapping above that x_1 maps to two y values, y_1 and y_2 . This mapping is NOT a function.

Tables

Another way to see whether a mapping is a function is through a table of values.

X	у	х	y	Γ	х	у		X	у	
-3	9	0	1		-1	5		-3	-6	
-2	4	1	1		0	6		-2	-4	
-1	1	2	1		1	7		-1	-2	
0	0	3	1		2	8		0	0	
1	1	4	1		3	9		1	2	
2	4	4	1		4	10		2	4	
3	9						1	3	6	

All of the tables of values above represent mappings from x values to y values. In all the tables above, there is no x values that maps to 2 or more distinct y values. This means, that each table presenting a mapping that is a *function*. What does a table of values looks like when it DOES NOT represent a function? let's hav ea look.

Х	у	Х	у	
25	5	6	-3	
25	-5	6	-2	
16	4	6	-1	
16	-4	6	0	
9	3	6	1	
9	-3	6	2	
4	2	6	3	1. A
4	-2	6	4	
1	1			1.00
1	-1			
0	0			

Notice that in each of the two tables avoer there is at least one x value that corresponds to moe than one y value. Another "test" to determine if a given mapping is a function is the *vertical line test*.

Vertical Line Test

The vertical line test tells us that the graph of a function can onle be intersected by a vertical ine once for any vertical line drawn. For example,

The graph of f is the blue curve above, represents a function because any vertical line that is drawn intersects the graph of f only once. Let's take a look a the graph below,

The graph of f above is NOT a graph of a function because there is a vertifal line that intersects the graph more than once.

Exercises

1. Which mappings below represent functions?

2. Which tables of values represent functions?

	v	V		v	V		v	V		v
		<u>y</u>		A 0	<u>y</u>		1	<u>y</u>		
	-3	-27		-2	0			1		-2
	-2	-8		-1	1		2	1/2		-1
a)	-1	-1	b)	-1	-1		3	1/3	d)	0
	0	0		0	2	c)	4	1/4	u)	1
	1	1		0	-2		-1	-1		1
	2	8		1	3		-2	-1/2		2
	3	27		1	-3		-3	- 1/3		3
			_	2	4		4	-1/4		
				2	-4					

3. Which of the graphs below represent functions? (Use the vertical line test.)