Definition of a Limit 2

Raise My
 MAKS

RaiseMyMarks.com

Definition of a Limit

In words the limit of a function is a value that the function approaches as the independent variable, usally denoted by x, tends to a particular value. This particular value is either a finite value a say, or infinity, ∞. Below is the definition of a limit in mathemtical notation,

$$
\lim _{x \rightarrow a} f(x)=L
$$

where L exists, means,

$$
\begin{equation*}
\forall \epsilon>0, \quad \exists \delta>0 \ni,|x-a|<\delta \Longrightarrow|f(x)-L|<\epsilon \tag{1}
\end{equation*}
$$

The notation $x \rightarrow a$ means that x is approaching a from any direction. However, in some cases it may be the case that the limit only exists when a is being approached from either the left or right. In these cases the limit is defined below,

Right hand Limit Definition

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

is defined as,

$$
\begin{equation*}
\forall \epsilon>0, \quad \exists \delta>0 \ni, x-a>\delta \Longrightarrow|f(x)-L|<\epsilon \tag{2}
\end{equation*}
$$

In this above limit, x is approaching a from the positive side of a or from the right hand side. Now let's consider the definition of a limit when x is approaching a from the left hand side.

Left hand limit Definition

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

is defined as,

$$
\begin{equation*}
\forall \epsilon>0, \quad \exists \delta>0 \ni, x-a<\delta \Longrightarrow|f(x)-L|<\epsilon \tag{3}
\end{equation*}
$$

So far we've considered limits as x approaches a finite value a. I some cases the limit occurs when x approaches infinity. Let's take at look at the definition of the limit as x tends to positive infinity and then negative infinity.

Limit as x tends to infinity (Horizontal asymptotes)

$$
\lim _{x \rightarrow+\infty} f(x)=L
$$

is defined by,

$$
\begin{equation*}
\forall \epsilon>0 \quad \exists N>0 \ni, x>N \Rightarrow|f(x)-L|<\epsilon \tag{4}
\end{equation*}
$$

and,

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

is defined by,

$$
\begin{equation*}
\forall \epsilon>0 \quad \exists N<0 \ni, x<N \Rightarrow|f(x)-L|<\epsilon \tag{5}
\end{equation*}
$$

So far we have considered finit limits L. Let's now consider infinte limites, that is when our L is replaced by negative or positive infinity.

Infinite Limits

$$
\lim _{x \rightarrow a} f(x)=+\infty
$$

is defined a

$$
\begin{equation*}
\forall N>0, \quad \exists \delta>0 \ni,|x-a|<\delta \Rightarrow f(x)>N \tag{6}
\end{equation*}
$$

or

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

is defined a

$$
\begin{equation*}
\forall N<0, \quad \exists \delta>0 \ni,|x-a|<\delta \Rightarrow f(x)<N \tag{7}
\end{equation*}
$$

Above we considered the situation where x approaches a from any direction, left or right. However, we can also have x approaching a from just the left or just the right. These definitions are below.

$$
\lim _{x \rightarrow a^{+}} f(x)=+\infty
$$

is defined as,

$$
\begin{equation*}
\forall N>0, \exists \delta>0 \ni, x-a>\delta \Rightarrow f(x)>N \tag{8}
\end{equation*}
$$

and

$$
\lim _{x \rightarrow a^{-}} f(x)=+\infty
$$

is defined as,

$$
\begin{equation*}
\forall N>0, \exists \delta>0 \ni, x-a<\delta \Rightarrow f(x)>N \tag{9}
\end{equation*}
$$

And for the negative limit,

$$
\lim _{x \rightarrow a^{+}} f(x)=-\infty
$$

is defined as,

$$
\begin{equation*}
\forall N<0, \exists \delta>0 \ni, x-a>\delta \Rightarrow f(x)<N \tag{10}
\end{equation*}
$$

and

$$
\lim _{x \rightarrow a^{-}} f(x)=-\infty
$$

is defined as,

$$
\begin{equation*}
\forall N<0, \exists \delta>0 \ni, x-a<\delta \Rightarrow f(x)<N \tag{11}
\end{equation*}
$$

Examples

Find the following limit.

$$
\lim _{x \rightarrow 0} \frac{x^{4}-5 x}{x^{3}+2 x}
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{x^{4}-5 x}{x^{3}+2 x} \\
= & \lim _{x \rightarrow 0} \frac{x\left(x^{3}-5\right)}{x\left(x^{2}+2\right)} \\
= & \lim _{x \rightarrow 0} \frac{x^{3}-5}{x^{2}+2} \\
= & \frac{0-5}{x+2} \\
= & -\frac{5}{2}
\end{aligned}
$$

Therefore,

$$
\lim _{x \rightarrow 0} \frac{x^{4}-5 x}{x^{3}+2 x}=-\frac{5}{2} .
$$

Examples

Find the limit below,

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{5 x^{3}+4}
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{5 x^{3}+4} \\
= & \lim _{x \rightarrow \infty} \frac{x^{3}\left(3-2 \frac{1}{x^{2}}+\frac{1}{x^{3}}\right)}{x^{3}\left(5+4 \frac{1}{x^{3}}\right)} \\
= & \lim _{x \rightarrow \infty} \frac{3-\frac{2}{x^{2}}-\frac{1}{x^{2}}}{5+\frac{4}{x^{3}}} \\
= & \lim _{x \rightarrow \infty} \frac{3-0-0}{5+0} \\
= & \frac{3}{5}
\end{aligned}
$$

Therefore,

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{5 x^{3}+4}=\frac{3}{5}
$$

Exercises

Find the following limits,
1.

$$
\lim _{x \rightarrow 3} \frac{1}{(x-3)^{2}}
$$

2.

$$
\lim _{x \rightarrow \infty} \frac{1}{x+1}
$$

3.

$$
\lim _{x \rightarrow \infty} \frac{2 x^{3}-5}{7 x^{3}+x-1}
$$

4.

$$
\lim _{x \rightarrow \infty} \frac{x^{3}}{x^{2}-4 x}
$$

5.

$\lim _{x \rightarrow \infty} \frac{3-x}{x^{2}+2 x}$
6.

$$
\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}
$$

7.

$\lim _{x \rightarrow 2^{+}} \frac{1}{x+2}$
8.
$\lim _{x \rightarrow \infty} \frac{5 x^{2}}{x-3 x^{2}}$

