Chain Rule

Raise My KS

RaiseMyMarks.com

2020

Chain Rule - Differentiation

Given functions f(x) and g(x) the deritivate of the function,

$$F(x) = f(q(x)) = f \circ q(x)$$

is given by,

$$F'(x) = f'(g(x))g'(x) \tag{1}$$

Equation (1) is called the *chain rule* of differentiation.

Example

Find the derivative of the function,

$$y = (x^3 + 1)^2 (2)$$

Solution: We first need to determine what the two function f and g are in order to apply the chain rule (1). Taking a look at equation (2) if we take $f(x) = x^2$ and $g(x) = x^3 + 1$, the composition $f \circ g(x)$ gives us the function $f \circ g(x) = (x^3 + 1)^2$. So, now we can apply the chain rule and we know what functions f and g we are considering in equation (1).

$$y' = 2(x^3 + 1)^1(3x^2)$$

= 2(3x²)(x³ + 1)
= 6x²(x³ + 1)

Therefore, $y' = 6x^2(x^3 + 1)$.

Exercises

Use the chain rule to differentiate the following functions.

a)
$$y = (-5 - x^2)^3$$

e)
$$y = -(3x^2 + 2x^3)^{-1}$$

b)
$$y = (3 - 4x^3)^4$$

f)
$$y = \frac{1}{2x + 6x^2}$$

c)
$$y = (1+2x)^{-2}$$

g)
$$y = \frac{1}{(x^2 - x - 1)^4}$$

d)
$$y = (2 + x + 3x^2)^{-4}$$