Chain Rule

Raise My
 MAks

RaiseMyMarks.com

Chain Rule - Differentiation

Given functions $f(x)$ and $g(x)$ the deritivate of the function,

$$
F(x)=f(g(x))=f \circ g(x)
$$

is given by,

$$
\begin{equation*}
F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) \tag{1}
\end{equation*}
$$

Equation (1) is called the chain rule of differentiation.

Example

Find the derivative of the function,

$$
\begin{equation*}
y=\left(x^{3}+1\right)^{2} \tag{2}
\end{equation*}
$$

Solution: We first need to determine what the two function f and g are in order to apply the chain rule (1). Taking a look at equation (2) if we take $f(x)=x^{2}$ and $g(x)=x^{3}+1$, the composition $f \circ g(x)$ gives us the function $f \circ g(x)=\left(x^{3}+1\right)^{2}$. So, now we can apply the chain rule and we know what functions f and g we are considering in equation (1).

$$
\begin{aligned}
y^{\prime} & =2\left(x^{3}+1\right)^{1}\left(3 x^{2}\right) \\
& =2\left(3 x^{2}\right)\left(x^{3}+1\right) \\
& =6 x^{2}\left(x^{3}+1\right)
\end{aligned}
$$

Therefore, $y^{\prime}=6 x^{2}\left(x^{3}+1\right)$.

Exercises

Use the chain rule to differentiate the following functions.
a) $y=\left(-5-x^{2}\right)^{3}$
e) $y=-\left(3 x^{2}+2 x^{3}\right)^{-1}$
b) $y=\left(3-4 x^{3}\right)^{4}$
f) $y=\frac{1}{2 x+6 x^{2}}$
c) $y=(1+2 x)^{-2}$
g) $y=\frac{1}{\left(x^{2}-x-1\right)^{4}}$
d) $y=\left(2+x+3 x^{2}\right)^{-4}$

