Arithmetic Sequences

RaiseMyMarks.com

2020

Sequences

There are two types of sequences we will consider, arithmetic and geometric. Regardless of the type of sequence, we will call the general term of the sequence t_n and the first term, $t_1 = a$. The value n is the position of the term in the sequence. When writing the term of a sequence, there are two ways: A formula for the general term t_n in terms of n and a recursive formula for t_n that involves the previous, t_{n-1} term. Let's start with arithmetic sequences.

Arithmetic sequences

An **arithemic sequence** can be thought of a sequence of numbers where the next number, or term, in the sequence, is the previous value or term plus a fixed value, d, say. Let's consider a few examples to see this idea explicitly.

$$S_1 = 1, 3, 5, 7, 9, 11, 13, 15, \dots$$

 $S_2 = 2, 7, 12, 17, 22, 27, 32, 37, \dots$
 $S_3 = 6, 3, 0, -3, -6, -9, -12, -15, \dots$

If we look at the three arithmetic sequences above in greater detail we see that for, sequence S_1 , the sequence starts at 1 and each term is increasing by 2; sequence S_2 , the sequence starts at 2 and each term is increasing by 5; sequence S_3 , the sequence starts at 6 and each term is decreasing by -3. We call the value that the sequence starts at a and the amount that the sequence changes by d. The general term for an arithmetic sequence is given by,

$$t_n = a + (n-1)d$$

The recursive formula for an arithmetic sequence is given by,

$$t_n = t_{n-1} + d$$

Exercises

1. Which sequences are arithemtic sequences?

a)
$$\{-18, -7, 4, 15, 26, \ldots\}$$
 g) $\{5, 7, 9, 11, 13, \ldots\}$

g)
$$\{5, 7, 9, 11, 13, \ldots\}$$

b)
$$\{1, 2, 4, 8, 16, 32, \ldots\}$$

h)
$$\{3, 15, 75, 375, 1875, \ldots\}$$

c)
$$\{1, -1, 1, -1, 1, -1, \ldots\}$$

i)
$$\{1, 3, 5, 7, 9, \ldots\}$$

d)
$$\{-1, 3, 7, 11, 15, \ldots\}$$

j)
$$\{2, 2/3, 2/9, 2/27, 2/81, \ldots\}$$

e)
$$\{7, 4, 1, -2, -5, \ldots\}$$

f)
$$\{1/2, 1/4, 1/8, 1/16, \ldots\}$$

$$1) \{1, 4, 7, 10, 13, 16, 19, 22, 25, \ldots\}$$

m)
$$\{2/3, 2/9, 2/17, 2/81, \ldots\}$$
 o) $\{3, 6, 12, 24, \ldots\}$

o)
$$\{3, 6, 12, 24, \ldots\}$$

n)
$$\{88, 78, 68, 58, 48, \ldots\}$$

p)
$$\{3, 8, 13, 23, 28, 33, 38, \ldots\}$$

2. For the arithmetic sequences in #1 find a, d, the general term and the recursive term for the sequence.