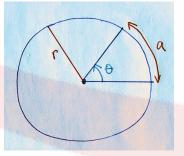

Arc Length


RaiseMyMarks.com

2020

Arc Length

What is **arc length**? The arc length is the length of the arc travelled around a circle with a given radius r for a given angle θ in radians. Let's consider the following diagram of a circle with raidus r.

A slice of pie or *sector* of the circle is cut out. The angle at the centre of the circle of the pie or setor is θ and the length of the outer edge or arc length of the sector is given by a. The relationship between θ , a and r is given by,

$$\theta = \frac{a}{r} \tag{1}$$

Let's consider an example.

Example

Find the arc length of a sector of a circle with radius r = 9cm with angle 45° .

Solution: The angle 45° can be written as $\pi/4$ radians. Using equation (1) we can solve for a,

$$\begin{array}{rcl} \theta & = & \frac{a}{r} \\ a & = & r\theta \end{array}$$

Now we can plug in our values for θ and r and evaluate for a.

$$a = (9)(\pi/4)$$
$$= \frac{9\pi}{4}$$

Therefore, the arclength of the circle of radius 9cm with angle 45° is $\frac{9\pi}{4}cm$.

Exercises

Find the arc length travelled throughout the angle θ below along a circle with the radius r given below.

1.
$$\theta = \frac{7\pi}{6}, r = 3$$
 6. $\theta = \frac{4\pi}{3}, r = 2$

2.
$$\theta = \frac{3\pi}{4}, r = 4$$
 7. $\theta = 2\pi, r = 5$

3.
$$\theta = \frac{\pi}{4}, r = 2$$

8. $\theta = \frac{6\pi}{11}, r = 3$

4.
$$\theta = \frac{\pi}{2}, r = 5$$
 9. $\theta = \pi, r = 8$

5.
$$\theta = \frac{\pi}{5}, r = 6$$
 10. $\theta = \frac{5\pi}{7}, r = 9$