Symmetric equation of a line in \mathbb{R}^{3}

Raise My

RaiseMyMarks.com

Equation of a line in \mathbb{R}^{3}

Let's consider 3-dimensional space, \mathbb{R}^{3}, and the forms of the equation of a line.

Vector equation of a line

First let's recall the vector form of the equation of a line in \mathbb{R}^{3}. This is similar to the vector form of the equation of a line in the Cartesian plane. We have a point $\underline{x}_{0}=\left(x_{01}, x_{02}, x_{03}\right)$ the lines goes through, and a vector $\underline{m}=\left(m_{1}, m_{2}, m_{3}\right)$ for the direction of the line.

$$
\underline{x}=\underline{x}_{0}+t \underline{m}, t \in \mathbb{R}
$$

is the fector form of the equation of a line in \mathbb{R}^{3}.

Parametric equation of a line

The parametric equation of a line in \mathbb{R}^{3} is again similar to the parametric equation of a line in \mathbb{R}^{2}. Start with the vecor form and rewrite it componentwise to give the parametric eqation of the line.

$$
\begin{align*}
& x_{1}=x_{01}+t m_{1} \tag{1}\\
& x_{2}=x_{02}+t m_{2} \tag{2}\\
& x_{3}=x_{03}+t m_{3} \tag{3}
\end{align*}
$$

where $t \in \mathbb{R}$.

Symmtric equation of a line in \mathbb{R}^{3}

The symmetric equation of a line in \mathbb{R}^{3} is not considered in the Cartesian plane but in 3 -dimensional space \mathbb{R}^{3}. Given a point $\underline{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ on the line and the direction of the line $\underline{m}=(a, b, c) \neq(0,0,0)$ the symmetric equation of the line is given by,

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c} .
$$

We can get these equations, by taking the 3 equations of the parametric equation of a line and solve each for t. So, from equations 1,2 and 3 above, we have,

$$
\begin{align*}
& x_{1}=x_{01}+t m_{1} \Longrightarrow \frac{x_{1}-x_{01}}{m_{1}}=t \tag{4}\\
& x_{2}=x_{02}+t m_{2} \Longrightarrow \frac{y_{1}-y_{01}}{m_{2}}=t \tag{5}\\
& x_{3}=x_{03}+t m_{3} \Longrightarrow \frac{z_{1}-z_{01}}{m_{3}}=t \tag{6}
\end{align*}
$$

Equating these three equations, 4,5 , and 6 we have,

$$
\frac{x_{1}-x_{01}}{m_{1}}=\frac{y_{1}-y_{01}}{m_{2}}=\frac{z_{1}-z_{01}}{m_{3}}
$$

which is exactly the symmetric equation of the line through the point $\underline{x}_{0}=\left(x_{01}, y_{01}, z_{01}\right)$ in the direction $\underline{m}=\left(m_{1} m_{2}, m_{3}\right)$ where $\underline{x}=\left(x_{1}, y_{1}, z_{1}\right)$ is a general point on this line.

Examples

Find the symmetric equation of the line through P and in the direction QR where $\mathrm{P}=(3,1,2), \mathrm{Q}=(-1,2,1)$ and $\mathrm{R}=(2,3,-1)$.

Solution: Let's find the direction \underline{m}.

$$
\underline{m}=R-Q=(2,3,-1)-(-1,2,1)=(3,1,-2)
$$

Let's find the parametric equation of the line through P now.

$$
\begin{aligned}
\underline{x}= & P+t \underline{m} \\
= & (3,1,2)+t(3,1,-2) \\
& x=3+3 t, y=1+t, z=2-2 t,
\end{aligned}
$$

where t is any realy number or $t \in \mathbb{R}$. Now, let's solve for t.

$$
\frac{x-3}{3}=t, y-1=t, \frac{z-2}{-2}=t
$$

Therefore, our symmetric equation for the line is,

$$
\frac{x-3}{3}=y-1=\frac{x-2}{2}
$$

Exercises

Given the points P, Q and R below determine the symmetric equation of the line through the point P in the direction of $Q R$.
c) $P(-1,2,1), Q(2,0,-1), R(-1,3,0)$
h) $P(-1,-2,1), Q(4,3,-1), R(3,1,2)$
d) $P(3,-2,0), Q(2,2,2), R(-1,2,-1)$
j) $P(0,-4,-1), Q(3,0,0), R(-2,3,1)$
g) $P(4,0,-3), Q(-1,2,0), R(1,1,1)$
k) $P(-2,5,-3), Q(2,2,-2), R(1,3,4)$

