Point of Intersection

Raise My
 MAks

RaiseMyMarks.com

Point of Intersection of two lines

When we are in the Cartesian plane or \mathbb{R}^{2} and we have two lines they are either parallel or eventually intersect. How do we find this point of intersection? Let's consider the following two lines,

$$
y=-3 x-2 \text { and } 2 x+3 y=5
$$

How do we figure out the point of intersection? First we need to determine if the lines are parallel or not. Our two lines are,

$$
\begin{aligned}
& l_{1}: y=-3 x-2 \\
& l_{2}: 2 x+3 y=5
\end{aligned}
$$

Rewrite all equations in the form $y=m x+b$.

$$
\begin{aligned}
l_{1}: y & =-3 x-2 \\
l_{2}: 2 x+3 y & =5 \\
3 y & =5-2 x \\
3 y & =-2 x+5 \\
y & =-\frac{2}{3} x+\frac{5}{3}
\end{aligned}
$$

Next, compare slopes. If the slopes of the two lines l_{1} and l_{2} are equal for both lines, then the lines are parallel. In our case,

$$
m_{1}=3 \neq m_{2}=-\frac{2}{3}
$$

So, l_{1} and l_{2} are not parallel. Next we need to find a point $\left(x_{0}, y_{0}\right)$ that is on the line l_{1} and l_{2}. So, we need to solve for x_{0} and y_{0} using l_{1} and l_{2}. How do we do this?

$$
\begin{aligned}
l_{1}: y & =-3 x-2 \\
l_{2}: y & =-\frac{2}{3} x+\frac{5}{3}
\end{aligned}
$$

Since $y=-3 x-2$ we plug y into l_{2}.

$$
\begin{aligned}
-3 x-2 & =-\frac{2}{3} x+\frac{5}{3} \\
-2-\frac{5}{3} & =-\frac{2}{3} x+3 x, \text { all } x \text { 's on one side, numbers on the other side of }= \\
-\frac{6}{3}-\frac{5}{3} & =-\frac{2}{3} x+\frac{9}{3} x \\
-\frac{11}{3} & =-\frac{7}{3} x \\
-3\left(\frac{11}{3}\right) & =-3\left(\frac{7}{3}\right) x, \text { divide both sides by } 3 \\
\frac{-11}{-1} & =\frac{-7 x}{-1}, \text { divide both sides by }-1 \\
\frac{11}{7} & =7 x, \text { divide both sides by } 7 \\
& x
\end{aligned}
$$

So we now have,

$$
x_{0}=\frac{11}{7}
$$

To find y_{0}, plug x_{0} into l_{1} or l_{2}.

$$
\begin{aligned}
y_{0} & =-3 x_{0}-2 \\
& =-3\left(\frac{11}{7}\right)-2 \\
& =-\frac{33}{7}-2 \\
& =-\frac{33}{7}-\frac{14}{7} \\
& y_{0}=-\frac{47}{7}
\end{aligned}
$$

Therefore, the point of intersection of l_{1} and l_{2} is,

$$
\left(x_{0}, y_{0}\right)=\left(\frac{11}{7},-\frac{47}{7}\right) .
$$

Exercises

For the pairs of lines, determine if they are parallel. If not, determine the point of intersection.
a) $y=3 x-3, y=\frac{1}{3} x+4$
b) $y=2 x+4, y=-2 x-3$
c) $y=5 x+1, y=2 x+1$
d) $y=\frac{7}{2} x-2, y=-\frac{2}{7}-\frac{1}{7}$
e) $y=-x+1, y=x+2$

