Perfect Square

Raise My

RaiseMyMarks.com

Perfect Square

We're going to continue looking at factoring polynomials but now we're considering the very special polynomial called a perfect square.

What is a perfect square?

A perfect square is a polynomial with a very specific format. This format is below,

$$
a^{2}+2 a b+b^{2}
$$

where a and b are our two "variables". I put "variables" in quotes because $a=5 x$ or $b=\frac{1}{y}$. a and b can be anything, a term, a number, a single variable or even another polynomial. Below are some examples of a perfect square polynomial.

$$
x^{2}+2 a x+a^{2}, x^{2}-2 a x+a^{2}, b^{2} x^{2}+2 a b x+a^{2} b^{2}
$$

Notice that there are two terms that are the square of some other term. So in the first example x^{2} is the square of x and a^{2} is the square of a. The is a third term that is the twice the product of the other two terms. So in this first example the term $2 a x$ is 2 times $x a$ where we have identified x and a as the terms that have been squared. It does take practice to recognize when a polynomial is a perfect square and what the "squared" terms are.

What is the factorization of a perfect square?

Good question. Once we know a polynomial is a perfect square we have the following factorization for the perfect square,

$$
\begin{equation*}
x^{2}+2 a x+a^{2}=(x+a)^{2} \tag{1}
\end{equation*}
$$

Let's verify that this is correct. We verify a factorization by multiplying it out and seeing if we get the original polynomial. Our original polynomial is $x^{2}+2 a x+a^{2}$. Let's multiply out the factorization $(x+a)^{2}$ and see what we get.

$$
\begin{aligned}
(x+a)^{2} & =(x+a)(x+a) \\
& =x^{2}+x a+a x+a^{2} \\
& =x^{2}+a x+a x+a^{2} \\
& =x^{2}+2 a x+a^{2}
\end{aligned}
$$

Success! We have obtained our orginial polynomial so the factorization of $x^{2}+2 a x+a^{2}$ is $(x+a)^{2}$.

Now let's look at how we approach factoring a perfect square. We'll consider an example and the steps we go through when factoring a perfect square.

Example

Steps for factoring a perfect square

Factor the following polynomial.

$$
\begin{equation*}
b^{2}+10 b+25 \tag{2}
\end{equation*}
$$

1. Is there a common factor for each term? No
2. Is this a perfect square? Yes. The two "squared" terms are b and 5 because $b^{2}=b \times b$ and $25=5^{2}$. And the third and remaining term $10 b$ is equal to $2 \times 5 b$, which is twice the product of the other two terms, 5 and b.
3. Apply the factorization for a perfect square to our case. We want to apply the factorization in (1) to our case in (2). Let's let $x=b$ and $a=5$. Now we have as our factorization for (2),

$$
b^{2}+10 b+25=(b+5)^{2}
$$

4. Check that this factorization is correct. We need to multiply out the factorization in step 3. to verify that we obtain our original polynomial in (2). We can check to see if this factorization works.

$$
\begin{aligned}
(b+5)^{2} & =(b+5)(b+5) \\
& =b^{2}+5 b+5 b+25 \\
& =b^{2}+10 b+25
\end{aligned}
$$

Success! We have factored correctly.
Below are some general forms perfect squares. a and b are constants and x is the variable.

$$
\begin{aligned}
x^{2}+2 a x+a^{2} & =(x+a)^{2} \\
b^{2} x^{2}+2 a b x+a^{2} & =(b x+a)^{2} \\
x^{2}-2 a x+a^{2} & =(x-a)^{2} \\
b^{2} x^{2}-2 a b x+a^{2} & =(b x-a)^{2}
\end{aligned}
$$

Exercises

1. Determine which of the following are perfect squares?
a) $x^{2}-81$
g) $36+y^{2}+12 y$
b) $121+44 x+4 x^{2}$
h) $9 x^{2}-24 x+4$
c) $x^{2}-18 x+81$
i) $7-6 x-x^{2}$
d) $x^{2}+9 x+20$
j) $100-x^{2}$
e) $4 x^{2}-36$
k) $a^{2} x^{2}+b^{2} y^{2}+2 a b x y$
f) $6 x^{2}-8 x-8$
1) $16-8 x-x^{2}$
2. For those polyonmials in 1 . that are perfect squares, factor.
