Equation of a Quadratic

RaiseMyMarks.com

Factored form of a Quadratic

What is the factored form of a quadratic? Suppose we have a quadratic function,

$$
\begin{equation*}
a x^{2}+b x+c \tag{1}
\end{equation*}
$$

with roots r and s. The factored form of the equation of the quadratic in (1) is given by,

$$
\begin{equation*}
(x-r)(x-s) \tag{2}
\end{equation*}
$$

How do we determine the factored form of the equation of a quadratic? Let's consider an example to see how to find the factored form.

Example

Find the factored form of the following quadratic.

$$
x^{2}+5 x+6 .
$$

Solution What are the roots of the above quadratic? We notice that $x=-3$ aor when $x=-2$ then our fuction $x^{2}+5 x+6=f(x)$ equals zero.

$$
\begin{aligned}
& f(-3)=(-3)^{2}+5(-3)+6=0 \\
& f(-2)=(-2)^{2}+5(-2)+6=0
\end{aligned}
$$

So the factors of $x^{2}+5 x+6$ are $(x+3)$ and $(x+2)$. Therefore, the factored form of $x^{2}+5 x+6$ is,

$$
x^{2}+5 x+6=(x+3)(x+2)
$$

We can also work backwards if we are given the roots of a quadratic, r and s. We can find the standard equation of the quadratic as follows,

$$
\begin{aligned}
(x-r)(x-s) & =x^{2}-s x-r x+r s \\
& =x^{2}-(s+r) x+r s
\end{aligned}
$$

Therefore,

$$
x^{2}-(x+r) x+r s
$$

is the standard form of the equation of a quadratic with roots r and s.
Let's consider an example.

Example

Given a quadratic has roots 7 and 2 , what is the equation of the quadratic?

Solution

1. First, determine the factors of the quadratic. In this case they are,

$$
(x-7) \text { and }(x-2)
$$

2. Second, take the product of the fators.

$$
\begin{aligned}
(x-7)(x-2) & =x^{2}-2 x-7 x+14 \\
& =x^{2}-9 x+14
\end{aligned}
$$

Therefore, $x^{2}-9 x+14$ is the standard form the quadratic with roots 7 and 2 .

Exercises

Given the following roots, find the standard form of the quadratic and the factored form of the quadratic.

1. $x_{1}=3 / 2, x_{2}=-4$
2. $x_{1}=-4, x_{2}=9$
3. $x_{1}=5, x_{2}=-2 / 3$
4. $x_{1}=3, x_{2}=0$
5. $x_{1}=-2, x_{2}=2$
6. $x_{1}=7, x_{2}=-5 / 2$
7. $x_{1}=1, x_{2}=1 / 4$
8. $x_{1}=-1 / 2, x_{2}=1 / 3$
9. $x_{1}=6, x_{2}=-3$
10. $x_{1}=8, x_{2}=-6$
