Domain of a Function

Raise My
 MAks

RaiseMyMarks.com

What is the domain of a function?

The domain and range are terms associated any function. Let's first consider what the domain and range are for any function f then we'll look at the special case of a quadratic. The domain of a function is the set of all x values that the function may be evaluated at. Below is a graph of a function and it's domain.

Now, let's look at an example.

Example

Suppose we are given the following function,

$$
f(x)=2 x^{3}+x^{2}-2
$$

What is it's domain and how do we find it?

Solution Looking at the function we see that for any value of x we can evaluate $f(x)$. For example,

x	$\mathrm{f}(\mathrm{x})$
0	$\mathrm{f}(0)=-2$
1	$\mathrm{f}(1)=1$
-1	$\mathrm{f}(-1)=-3$
2	$\mathrm{f}(2)=18$

We can create a table of values and for any real number x and $f(x)$ will exist. So our domain for f is the set of all real numbers. This can be written as,

$$
\text { Domainf }=\{x \mid x \in \mathbb{R}\}
$$

Example

Let's consider another example. What is the domain of the function given below.

$$
f(x)=\frac{1}{x-2}
$$

Solution What happens when $x=2$? When $x=2$,

$$
f(2)=\frac{1}{2-2}=\frac{1}{0}
$$

which does not exist. But, for any other value of x, the function $f(x)$ does exists. So the domain for this function is any real number except $x=2$, or

$$
\text { Domainf }=\{x \in \mathbb{R} \mid x \neq 2\}
$$

Example

Let's consider another example. Find the domain of the following function,

$$
f(x)=\sqrt{6-x}
$$

Solution Now we need to consider the square root function. What do we know about the square root function? We know that we cannot take the square root of a negative number. This means that for our example $f(x)=\sqrt{6-x}, 6-x$ cannot be negative or $6-x$ must be at least zero or,

$$
\begin{equation*}
6-x \geq 0 \tag{1}
\end{equation*}
$$

To determine which x values satisfy (1) we have to "solve" the inequality in (1).

$$
\begin{array}{r}
6-x \geq 0 \\
6 \text { geq }
\end{array}
$$

This means our domain is any real number x such that $x \leq 6$ or

$$
\text { Domainf }=\{x \in \mathbb{R} \mid x \leq\}
$$

Exercises

What is the domain of the following functions?
a) x^{3}
d) $\frac{x+2}{x^{2}-10 x+25}$
b) $\frac{1}{5 x+2}$
c) $\frac{1}{x^{2}-9}$
e) $\sqrt{x-2}$
f) $\sqrt{x^{2}+4 x-5}$

