Distance between two points

Raise My

RaiseMyMarks.com

Distance between two points

Sometimes we need to find the distance between two points. How do we do this? We need to use the distance formula. The distance formula is given by,

$$
\begin{equation*}
D=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \tag{1}
\end{equation*}
$$

in \mathbb{R}^{2} where our two points are $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$; the distance formula in \mathbb{R}^{3} is given by,

$$
\begin{equation*}
D=\sqrt{\left(x_{2}-x_{2}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \tag{2}
\end{equation*}
$$

where $P=\left(x_{1}, y_{1}, z_{1}\right)$ and $Q=\left(x_{2} y_{2}, z_{2}\right)$. Let's consider some examples.

Example in \mathbb{R}^{2}

Find the distance between the points $\mathrm{P}=(3,-2)$ and $\mathrm{Q}=(-1,3)$.
Solution We need to use the distance formula (1).

$$
\begin{aligned}
D= & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(3-(-1))^{2}+(-2-3)^{2}} \\
& =\sqrt{(3+1)^{2}+(-5)^{2}} \\
& =\sqrt{4^{2}+25} \\
& =\sqrt{41}
\end{aligned}
$$

Therefore, the distance between P and Q is $\sqrt{41}$.
Example in \mathbb{R}^{3}
Find the distance between the points $\mathrm{P}=(3,-1,2)$ and $\mathrm{Q}=(1,0,1)$.
Solution We need to use the distance formula (2).

$$
\begin{aligned}
D & =\sqrt{\left(x_{2}-x_{2}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \\
& =\sqrt{(1-3)^{2}+(0-(-1))^{2}+(1-2)^{2}} \\
& =\sqrt{(-2)^{2}+1^{2}=(-1)^{2}} \\
& =\sqrt{4+1+1} \\
& =\sqrt{6}
\end{aligned}
$$

Therefore, $\sqrt{6}$ is the distance between P and Q .

Exercises

Find the distance between tge points P and Q below.
a) $P(1,2), Q(0,2)$
b) $P(4,1), Q(-2,0)$
c) $P(-1,2), Q(2,3)$
d) $P(5,-2), Q(2,2)$
e) $P(-5,3), Q(-4,1)$
f) $P(-2,5,0), Q(1,3,3)$
g) $P(4,-2,0), Q(-1,3,2)$
h) $P(-1,0,-2), Q(0,4,3)$
i) $P(-3,2,-4), Q(2,-4,0)$
j) $P(0,-4,1), Q(-1,3,0)$

