
Distance between two points

RaiseMyMarks.com

2020

Distance between two points

Sometimes we need to find the distance between two points. How do we do this? We need to use the *distance formula*. The distance formula is given by,

$$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \tag{1}$$

in \mathbb{R}^2 where our two points are $P = (x_1, y_1)$ and $Q = (x_2, y_2)$; the distance formula in \mathbb{R}^3 is given by,

$$D = \sqrt{(x_2 - x_2)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$
(2)

where $P = (x_1, y_1, z_1)$ and $Q = (x_2y_2, z_2)$. Let's consider some examples.

Example in \mathbb{R}^2

Find the distance between the points P=(3, -2) and Q=(-1, 3).

Solution We need to use the distance formula (1).

$$D = = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(3 - (-1))^2 + (-2 - 3)^2}$
= $\sqrt{(3 + 1)^2 + (-5)^2}$
= $\sqrt{4^2 + 25}$
= $\sqrt{41}$

Therefore, the distance between P and Q is $\sqrt{41}$.

Example in \mathbb{R}^3

Find the distance between the points P = (3, -1, 2) and Q = (1, 0, 1).

Solution We need to use the distance formula (2).

$$D = \sqrt{(x_2 - x_2)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

= $\sqrt{(1 - 3)^2 + (0 - (-1))^2 + (1 - 2)^2}$
= $\sqrt{(-2)^2 + 1^2} = (-1)^2$
= $\sqrt{4 + 1 + 1}$
= $\sqrt{6}$

Therefore, $\sqrt{6}$ is the distance between P and Q.

Distance between two points - Exercises

Exercises

Find the distance between tge points P and Q below.

- a) P(1,2), Q(0,2) f) P(-2,5,0), Q(1,3,3)
- b) P(4,1), Q(-2,0)

g) P(4, -2, 0), Q(-1, 3, 2)

- c) P(-1,2), Q(2,3)h) P(-1,0,-2), Q(0,4,3)
- d) P(5,-2), Q(2,2) i) P(-3,2,-4), Q(2,-4,0)
- e) P(-5,3), Q(-4,1)

j) P(0, -4, 1), Q(-1, 3, 0)