Distance from a point to a line

Raise My

RaiseMyMarks.com

Distance from a point to a line

To find the distance of a point P to a line l we always consider the perpendicular distance from the point to the line. What does "perpendicular" distance mean? If we draw a line through the point P that intersects our line l at some other point Q , say, the distance from P to Q, PQ, is the "perpendicular" distance from the point P to l. This is also the shortest distance between a point and line. To find the distance the length or distance formula needs to be used. The distance formula is given by,

$$
\begin{equation*}
D=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \tag{1}
\end{equation*}
$$

where $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$, say. Let's consider an example.

Example

Find the shortest distance from $\mathrm{P}=(-1,3)$ to $x-y+5-0$.

Solution

Step 1: We need to find the equation of the line through P and perpendicular to $x-y+5=0$. We need to find the slope of the line.

$$
\begin{aligned}
x-y+5 & =0 \\
-y & =-5-x \\
y & =x+5
\end{aligned}
$$

Therefore, the slope is $m=1$. The slope of a line perpendicular to the given line $x-y+5=0$ is $m_{\perp}=-\frac{1}{1}=-1$. Now, let's find the equation of the line through P with the slope $m_{\perp}=-1$.

$$
\begin{aligned}
& y=m_{\perp} x+b \\
& y=-x+b
\end{aligned}
$$

We need to find b. We know P lies on the line, so let's plug $\mathrm{P}=(-1,3)$ in to find b.

$$
\begin{aligned}
3 & =(-1)(-1)+b \\
3 & =1+b \\
\therefore 2 & =b
\end{aligned}
$$

Therefore the equation of the line perpendicular to $x-y+5=0$ through $\mathrm{P}=(-1,3)$ is $y=-x+2$.

Step 2: We know $y=-x+2$ is perpendicular to $x-y+5=0$. Now we need to find the point of intersection, Q say, of these two lines. We find this point be equating the two lines,

$$
\begin{align*}
y & =-x+2 \tag{2}\\
x-y+5 & =0 \Longrightarrow y=x+5 \tag{3}
\end{align*}
$$

Let's equation equations (2) and (3).

$$
\begin{array}{rll}
y=-x+2 & =x+5 \\
2-5 & =x+x \\
-3 & =2 x \\
-\frac{3}{2} & =x
\end{array}
$$

Therefore, the x coordinate of the point of intersection is $-\frac{3}{2}$. Next, we need to find the y coordinate of the point of intersection. We do this by pluging the x coordinate into one of the equations (2) or (3). Let's plug the x coordinate into equation (2).

$$
\begin{aligned}
y & =-x+2 \\
y & =-\left(-\frac{3}{2}\right)+2=\frac{3}{2}+2 \\
y & =\frac{3}{2}+\frac{4}{2} \\
\therefore y & =\frac{7}{2}
\end{aligned}
$$

Therefore the y coordinate of the point of intersection is $y=\frac{7}{2}$. Therefore, the point of intersection is $Q=\left(-\frac{3}{2}, \frac{7}{2}\right)$.

Step 3: Now we need to find the distance between $\mathrm{P}=(-1,3)$ and $\mathrm{Q}=\left(-\frac{3}{2}, \frac{7}{2}\right)$. For this we need to use the distance formula (1).

$$
\begin{aligned}
D & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{\left(-\frac{3}{2}+1\right)^{2}+\left(\frac{7}{2}-3\right)^{2}} \\
& =\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{7}{2}-\frac{6}{2}\right)^{2}} \\
& =\sqrt{\frac{1}{2}+\left(\frac{1}{2}\right)^{2}} \\
& =\sqrt{\frac{1}{4}+\frac{1}{4}} \\
& =\sqrt{\frac{2}{4}} \\
\therefore D & =\sqrt{\frac{1}{2}}
\end{aligned}
$$

Step 4: We need a final statement.
Therefore, the distance between $\mathrm{P}=(-1,3)$ and line $l: x-y+5=0$ is $\frac{1}{\sqrt{2}}$.

Exercises

1. Find the shortest distance between the point P and the line l given below.
a) $P=(2,2) ; l: y=x+1$
b) $P=(0,-1) ; l: 5 x+2 y+3=0$
c) $P=(-2,-1) ; l: 2 x+y+3=0$
2. Find the distance from the piont A to the line joining B and C where,
a) $\mathrm{A}=(-2,-2), \mathrm{B}=(5,2), \mathrm{C}=(-1,4)$
b) $\mathrm{A}=(5,5), \mathrm{B}=(2,-6), \mathrm{C}=(5,8)$
c) $\mathrm{A}=(1,2), \mathrm{B}=(2,-5), \mathrm{C}=(6,-3)$
3. A line has y-intercept Y and x -intercept X . Find the shortest distance from the point P to the line where X, Y and P are given below.
a) $\mathrm{X}=(-6,0), \mathrm{Y}=(0,-3), \mathrm{P}=(5,-11)$
b) $\mathrm{X}=(2,0), \mathrm{Y}=(0,-7), \mathrm{P}=(9,3)$
c) $\mathrm{X}=(7,0), \mathrm{Y}=(0,-4), \mathrm{P}=(4,10)$
