Converting Improper Fractions to Mixed Fractions

 ${\bf Raise My Marks. com}$

2020

Let's take a look at an example.

$$\frac{14}{3} = \frac{\text{total } \# \text{ of pieces of pie}}{\# \text{ of pieces in each pie}}$$

1. How many whole pies with 3 pieces in each pie does 14 pieces of pie make?

2.

$$\frac{14}{3} = 4\frac{2}{3}$$

Let's consider another example.

$$\frac{15}{4}$$

$$\frac{15}{4} = 3\frac{3}{4}$$

Another way of considering an improper fraction is division with a remainder.

 $\frac{15}{4}$ same as $15 \div 4$ or

Convert the following improper fractions into mixed fractions.

a)	<u>15</u>
	$\overline{2}$

b)
$$\frac{7}{3}$$

c)
$$2\frac{10}{4}$$

d)
$$\frac{20}{7}$$

e)
$$3\frac{8}{3}$$

f)
$$\frac{9}{4}$$

g)
$$\frac{15}{6}$$

h)
$$\frac{17}{4}$$

i)
$$\frac{23}{5}$$

j)
$$4\frac{37}{6}$$

k)
$$9\frac{42}{8}$$

1)
$$\frac{20}{5}$$

m)
$$\frac{12}{5}$$

n)
$$6\frac{16}{7}$$

o)
$$\frac{27}{4}$$

p)
$$7\frac{32}{6}$$

$$q) \frac{35}{8}$$

r)
$$10\frac{44}{10}$$

t)
$$\frac{8}{5}$$