Composition of Functions
Identifying f and g

Raise My

RaiseMyMarks.com

What is the composition of functions?

The composition of functions means, one function is inserted into the another funcionn where a variable would normally go. If we consider functions $f(x)$ and $g(x)$, the composition of two functions f and g means, the function g is inserted into the function f as the value of x, or $x=g(t)$ for $f(x)$. Let's a look at an example to get a better idea of what this means and looks like.

Example

Let's look at the compostion of two plynomials. For example, let's consider

$$
f(x)=x^{2}+3 x-1 \text { and } g(t)=t+1
$$

What is the composition of f and g or in notation, what is $f \circ g$?
Solution The compoistion of f and g looks like,

$$
f \circ g(t) \text { or } f(g(t))
$$

and is given by,

$$
\begin{aligned}
f(g(t)) & =f(t+1), \text { where } x=g(t)=t+1 \\
& =(t+1)^{2}+3(t+1)-1 \\
& =\left(t^{2}+2 t+1\right)+(3 t+3)-1 \\
& =t^{2}+2 t+1+3 t+3-1 \\
\therefore f(g(t)) & =t^{2}+5 t+3
\end{aligned}
$$

is the resulting polynomial.

Identifying f and g

Let's try another example.

Example

For the function

$$
y=\frac{1}{2 x+3}
$$

determine f and g so that $y=f(g(x))$.

Solution: Looking at the function

$$
y=\frac{1}{2 x+3},
$$

we want to try and find the "smallest" or most basic functions we can recognize. For example, a linear function x, or a quadratic x^{2} or a rational function $\frac{1}{x}$ or a square root \sqrt{x} etc. We can think of some of these "smallest" or "basic" functions as parent functions. Let's see if we can identify some parent functions in our given function. Immediately we see that we are dealing with a rational function or a fraction so $\frac{1}{x}$ is one possible parent function. We also notice in the denominator we have $2 x+3$. So $2 x+3$ is another pssible function. So now we have to decide which one is $f(x)$ and which is $g(x) . g(x)$ is the function being inserted as the variable, so the inner function, and $f(x)$ is the function that is being inserted into, so the outer function. In our case, if we take $f(x)=\frac{1}{x}$ and $g(x)=2 x+3$, we should get our given function $y=\frac{1}{2 x+3}$. Let's check that this is the case. Let $f(x)=\frac{1}{x}$ and $g(x)=2 x+3$. Now we'll verfiy that $f(g(x))=\frac{1}{2 x+3}$.

$$
\begin{aligned}
f(g(x)) & =f(2 x+3), \text { where } g(x)=2 x+3 \\
& =\frac{1}{2 x+3}
\end{aligned}
$$

Therefore, we made the correct "guess"; $f(x)=\frac{1}{x}$ and $g(x)=2 x+3$.

Exercises

For each function determine f and g so that $y=f(g(x))$.
a) $y=(x+1)^{2}-2 x(x+1)+3$
f) $y=\sqrt{x+1}$
b) $y=\operatorname{frac} 42 x^{2}+3$
g) $y=\frac{-1}{x+1}$
c) $y=-2 \sqrt{x-1}$
h) $y=(x+1)^{2}$
d) $\left(x^{2}+3\right)^{4}$
i) $y=\sqrt{x^{2}+1}$
e) $y=-(4 x-5)^{3}$
j) $y=\left(x^{3}+1\right)^{4}$

