Composition of Functions Evaluation



RaiseMyMarks.com

2020

# What is the composition of functions?

The composition of functions means, one function is inserted into the another funcionn where a variable would normally go. If we consider functions f(x) and g(x), the composition of two functions f and g means, the function g is inserted into the function f as the value of x, or x = g(t) for f(x). Let's a look at an example to get a better idea of what this means and looks like.

### Example

Raise My

Let's look at the composition of two plynomials. For example, let's consider

$$f(x) = x^2 + 3x - 1$$
 and  $g(t) = t + 1$ .

What is the composition of f and g or in notation, what is  $f \circ g$ ?

Solution The composition of f and g looks like,

$$f \circ g(t)$$
 or  $f(g(t))$ 

and is given by,

$$f(g(t)) = f(t+1), \text{ where } x = g(t) = t+1$$
  
=  $(t+1)^2 + 3(t+1) - 1$   
=  $(t^2 + 2t + 1) + (3t+3) - 1$   
=  $t^2 + 2t + 1 + 3t + 3 - 1$   
 $\therefore f(g(t)) = t^2 + 5t + 3$ 

is the resulting polynomial.

### Evaluating a composite function

Let's try another example but this time we want to evaluate the composite function  $f \circ g$  at a particular value for x.

## Example

Given f(x) = 4x + 1 and  $g(x) = -x^2$ . Determine, (a) f(g(-1)) and (b)  $g \circ f(0)$ .



#### Solution:

- a) There are two ways we can apprach this exercises.
  - 1. We can first determine what the composite function f(g(x)) looks like then let x = -1 and evaluate. Let's do this and see what we get.

$$f(g(x)) = f(-x^2)$$
 where  $g(x) = -x^2$   
-  $-4x^2 + 1$ 

Now we let x = -2 in our function  $f(g(x)) = -4x^2 + 1$ .

$$f(g(-1)) = -4(-1)^2 + 1$$
  
= -4 + 1  
= -3

Therefore, f(g(-1)) = -3.

- 2. The second way to determine the value f(g(-1)) is to first find the value g(-1), then plug in this new value in for x in f. Let's do this.
  - i. First:  $g(-1) = -(-1)^2 = -1$ . ii. Second: f(g(-1)) = f(-1) = 4(-1) + 1 = -4 + 1 = -3Therefore, f(g(-1)) = -3

So, both ways gave the same answer. The second way, is much quicker.

b) Let's use the second way to find  $g \circ f(0)$ .

- 1. First we need to find f(0). f(0) = 4(0) = 1 = 1
- 2. Second, we need to evaluate g at f(0) = 1. So,  $g(f(0)) = g(1) = -(1)^2 = -1$ .

Therefore,  $g \circ f(0) = -1$ .



## Exercises

Given  $f(x) = 2 - x^2$  and g(x) = -3x, determine the following values,

a) f(-1) f) f(2)

b)  $g \circ f(-1)$ 

g) g(f(2))

c)  $f \circ g(-1)$  h)  $f \circ g(-2)$ )

d) g(0)

i)  $g \circ g(0)$ 

e) f(g(0))

j) f(f(1))